- -

Catalysis by metal nanoparticles embedded on metal-organic frameworks

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Catalysis by metal nanoparticles embedded on metal-organic frameworks

Show full item record

Dhakshinamoorthy, A.; García Gómez, H. (2012). Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews. 41(15):5262-5284. https://doi.org/10.1039/c2cs35047e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70900

Files in this item

Item Metadata

Title: Catalysis by metal nanoparticles embedded on metal-organic frameworks
Author: Dhakshinamoorthy, Amarajothi García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] The present review describes the use of metal-organic frameworks (MOFs) as porous matrices to embed metal nanoparticles (MNPs) and occasionally metal oxide clusters, which are subsequently used as heterogeneous ...[+]
Subjects: POROUS COORDINATION POLYMERS , SUPPORTED GOLD NANOPARTICLES , EFFICIENT HETEROGENEOUS CATALYSTS , AEROBIC ALCOHOL OXIDATION , CHEMICAL-VAPOR-DEPOSITION , CROSS-COUPLING REACTIONS , HIGHLY-ACTIVE CATALYSTS , SILVER NANOPARTICLES , CO OXIDATION , ATMOSPHERIC-PRESSURE
Copyrigths: Cerrado
Source:
Chemical Society Reviews. (issn: 0306-0012 ) (eissn: 1460-4744 )
DOI: 10.1039/c2cs35047e
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c2cs35047e
Project ID:
info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
DGICYT/CTQ 2009-11587
DGICYT/CTQ 2010-18671
Thanks:
Financial support from the Spanish DGI (CTQ 2009-11587, CTQ 2010-18671 and CONSOLIDER MULTICAT) is gratefully acknowledged. Funding of European Commission through an integrated FP7 project MACADEMIA (FP7/2007-2013 No. ...[+]
Type: Artículo

References

Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386

Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j [+]
Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248

Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks:  Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386

Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j

Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610

Kitagawa, S., Noro, S., & Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers. Chem. Commun., (7), 701-707. doi:10.1039/b511728c

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Mellot-Draznieks, C., Dutour, J., & Férey, G. (2004). Hybrid Organic-Inorganic Frameworks: Routes for Computational Design and Structure Prediction. Angewandte Chemie International Edition, 43(46), 6290-6296. doi:10.1002/anie.200454251

Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650

Almeida Paz, F. A., Klinowski, J., Vilela, S. M. F., Tomé, J. P. C., Cavaleiro, J. A. S., & Rocha, J. (2012). Ligand design for functional metal–organic frameworks. Chem. Soc. Rev., 41(3), 1088-1110. doi:10.1039/c1cs15055c

Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c

Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063

Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f

Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u

Jiang, H.-L., & Xu, Q. (2011). Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 47(12), 3351. doi:10.1039/c0cc05419d

Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a

Juan-Alcañiz, J., Gascon, J., & Kapteijn, F. (2012). Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry, 22(20), 10102. doi:10.1039/c2jm15563j

Savonnet, M., Camarata, A., Canivet, J., Bazer-Bachi, D., Bats, N., Lecocq, V., … Farrusseng, D. (2012). Tailoring metal–organic framework catalysts by click chemistry. Dalton Transactions, 41(14), 3945. doi:10.1039/c2dt11994c

Vermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., … De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030g

Lescouet, T., Kockrick, E., Bergeret, G., Pera-Titus, M., & Farrusseng, D. (2011). Engineering MIL-53(Al) flexibility by controlling amino tags. Dalton Transactions, 40(43), 11359. doi:10.1039/c1dt11700a

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

Ishida, T., Nagaoka, M., Akita, T., & Haruta, M. (2008). Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 14(28), 8456-8460. doi:10.1002/chem.200800980

Ameloot, R., Roeffaers, M. B. J., De Cremer, G., Vermoortele, F., Hofkens, J., Sels, B. F., & De Vos, D. E. (2011). Metal-Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures. Advanced Materials, 23(15), 1788-1791. doi:10.1002/adma.201100063

Tsuruoka, T., Kawasaki, H., Nawafune, H., & Akamatsu, K. (2011). Controlled Self-Assembly of Metal–Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures. ACS Applied Materials & Interfaces, 3(10), 3788-3791. doi:10.1021/am200974t

El-Shall, M. S., Abdelsayed, V., Khder, A. E. R. S., Hassan, H. M. A., El-Kaderi, H. M., & Reich, T. E. (2009). Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. Journal of Materials Chemistry, 19(41), 7625. doi:10.1039/b912012b

Schmid, G. (1992). Large clusters and colloids. Metals in the embryonic state. Chemical Reviews, 92(8), 1709-1727. doi:10.1021/cr00016a002

Schröder, F., & Fischer, R. A. (2009). Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles. Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, 77-113. doi:10.1007/128_2009_4

Zhao, Y., Zhang, J., Song, J., Li, J., Liu, J., Wu, T., … Han, B. (2011). Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chemistry, 13(8), 2078. doi:10.1039/c1gc15340d

Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766

Campelo, J. M., Luna, D., Luque, R., Marinas, J. M., & Romero, A. A. (2009). Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem, 2(1), 18-45. doi:10.1002/cssc.200800227

Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n

Xuan, W., Zhu, C., Liu, Y., & Cui, Y. (2012). Mesoporous metal–organic framework materials. Chem. Soc. Rev., 41(5), 1677-1695. doi:10.1039/c1cs15196g

Li, H., Zhu, Z., Zhang, F., Xie, S., Li, H., Li, P., & Zhou, X. (2011). Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water. ACS Catalysis, 1(11), 1604-1612. doi:10.1021/cs200351p

Molnár, A. (2011). Efficient, Selective, and Recyclable Palladium Catalysts in Carbon−Carbon Coupling Reactions. Chemical Reviews, 111(3), 2251-2320. doi:10.1021/cr100355b

Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k

Corma, A., Díaz-Cabañas, M. J., Martínez-Triguero, J., Rey, F., & Rius, J. (2002). A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 418(6897), 514-517. doi:10.1038/nature00924

Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238

Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018

Pan, Y., Ma, D., Liu, H., Wu, H., He, D., & Li, Y. (2012). Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. Journal of Materials Chemistry, 22(21), 10834. doi:10.1039/c2jm30867c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537

Bernini, M. C., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E. V., … Monge, M. Á. (2009). Reversible Breaking and Forming of Metal-Ligand Coordination Bonds: Temperature-Triggered Single-Crystal to Single-Crystal Transformation in a Metal-Organic Framework. Chemistry - A European Journal, 15(19), 4896-4905. doi:10.1002/chem.200802385

Tan, X., Li, L., Zhang, J., Han, X., Jiang, L., Li, F., & Su, C.-Y. (2012). Three-Dimensional Phosphine Metal–Organic Frameworks Assembled from Cu(I) and Pyridyl Diphosphine. Chemistry of Materials, 24(3), 480-485. doi:10.1021/cm202608f

JIANG, D., MALLAT, T., KRUMEICH, F., & BAIKER, A. (2008). Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 257(2), 390-395. doi:10.1016/j.jcat.2008.05.021

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588

Tanabe, K. K., & Cohen, S. M. (2010). Modular, Active, and Robust Lewis Acid Catalysts Supported on a Metal−Organic Framework. Inorganic Chemistry, 49(14), 6766-6774. doi:10.1021/ic101125m

Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220

Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., & Garcia, H. (2012). Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol., 2(2), 324-330. doi:10.1039/c2cy00376g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042

Neogi, S., Sharma, M. K., & Bharadwaj, P. K. (2009). Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A: Chemical, 299(1-2), 1-4. doi:10.1016/j.molcata.2008.10.008

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352(4), 711-717. doi:10.1002/adsc.200900747

Aguado, S., Canivet, J., Schuurman, Y., & Farrusseng, D. (2011). Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 284(2), 207-214. doi:10.1016/j.jcat.2011.10.002

Tan, Y., Fu, Z., & Zhang, J. (2011). A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation. Inorganic Chemistry Communications, 14(12), 1966-1970. doi:10.1016/j.inoche.2011.09.022

Tran, U. P. N., Le, K. K. A., & Phan, N. T. S. (2011). Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catalysis, 1(2), 120-127. doi:10.1021/cs1000625

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Ladrak, T., Smulders, S., Roubeau, O., Teat, S. J., Gamez, P., & Reedijk, J. (2010). Manganese-Based Metal-Organic Frameworks as Heterogeneous Catalysts for the Cyanosilylation of Acetaldehyde. European Journal of Inorganic Chemistry, 2010(24), 3804-3812. doi:10.1002/ejic.201000378

Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs: «Click» reactions with Cu-MOF catalysts. Journal of Catalysis, 276(1), 134-140. doi:10.1016/j.jcat.2010.09.010

Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040

Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201

Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2012). Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. Journal of Catalysis, 285(1), 285-291. doi:10.1016/j.jcat.2011.10.001

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a

Dhakshinamoorthy, A., Alvaro, M., Hwang, Y. K., Seo, Y.-K., Corma, A., & Garcia, H. (2011). Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 40(40), 10719. doi:10.1039/c1dt10826c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t

Xie, M.-H., Yang, X.-L., & Wu, C.-D. (2011). A metalloporphyrin functionalized metal–organic framework for selective oxidization of styrene. Chemical Communications, 47(19), 5521. doi:10.1039/c1cc10461f

Tonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., … Volkmer, D. (2011). Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 17(31), 8671-8695. doi:10.1002/chem.201003173

Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2012). MIL-101 metal–organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catalysis Communications, 17, 18-22. doi:10.1016/j.catcom.2011.10.005

Beier, M. J., Kleist, W., Wharmby, M. T., Kissner, R., Kimmerle, B., Wright, P. A., … Baiker, A. (2011). Aerobic Epoxidation of Olefins Catalyzed by the Cobalt-Based Metal-Organic Framework STA-12(Co). Chemistry - A European Journal, 18(3), 887-898. doi:10.1002/chem.201101223

LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703

Biswas, S., Maes, M., Dhakshinamoorthy, A., Feyand, M., De Vos, D. E., Garcia, H., & Stock, N. (2012). Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 22(20), 10200. doi:10.1039/c2jm15592c

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine. Advanced Synthesis & Catalysis, 351(14-15), 2271-2276. doi:10.1002/adsc.200900362

Savonnet, M., Aguado, S., Ravon, U., Bazer-Bachi, D., Lecocq, V., Bats, N., … Farrusseng, D. (2009). Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 11(11), 1729. doi:10.1039/b915291c

Gu, J.-M., Kim, W.-S., & Huh, S. (2011). Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Transactions, 40(41), 10826. doi:10.1039/c1dt11274k

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217c

Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., & Liu, J. (2012). Progress in adsorption-based CO2capture by metal–organic frameworks. Chem. Soc. Rev., 41(6), 2308-2322. doi:10.1039/c1cs15221a

Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s

Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256v

Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t

Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190s

Bétard, A., & Fischer, R. A. (2011). Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews, 112(2), 1055-1083. doi:10.1021/cr200167v

Bradshaw, D., Garai, A., & Huo, J. (2012). Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem. Soc. Rev., 41(6), 2344-2381. doi:10.1039/c1cs15276a

Cui, Y., Yue, Y., Qian, G., & Chen, B. (2011). Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 112(2), 1126-1162. doi:10.1021/cr200101d

Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147

Shilov, A. E., & Shul’pin, G. B. (1997). Activation of C−H Bonds by Metal Complexes. Chemical Reviews, 97(8), 2879-2932. doi:10.1021/cr9411886

Corma, A., & García, H. (2003). Lewis Acids:  From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chemical Reviews, 103(11), 4307-4366. doi:10.1021/cr030680z

McNamara, C. A., Dixon, M. J., & Bradley, M. (2002). Recoverable Catalysts and Reagents Using Recyclable Polystyrene-Based Supports. Chemical Reviews, 102(10), 3275-3300. doi:10.1021/cr0103571

Jüntgen, H. (1986). Activated carbon as catalyst support. Fuel, 65(10), 1436-1446. doi:10.1016/0016-2361(86)90120-1

Wachs, I. E. (2005). Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 100(1-2), 79-94. doi:10.1016/j.cattod.2004.12.019

Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h

Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473

Sabo, M., Henschel, A., Fröde, H., Klemm, E., & Kaskel, S. (2007). Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry, 17(36), 3827. doi:10.1039/b706432b

Opelt, S., Türk, S., Dietzsch, E., Henschel, A., Kaskel, S., & Klemm, E. (2008). Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catalysis Communications, 9(6), 1286-1290. doi:10.1016/j.catcom.2007.11.019

Gao, S., Zhao, N., Shu, M., & Che, S. (2010). Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction. Applied Catalysis A: General, 388(1-2), 196-201. doi:10.1016/j.apcata.2010.08.045

Dang, T. T., Zhu, Y., Ghosh, S. C., Chen, A., Chai, C. L. L., & Seayad, A. M. (2012). Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chemical Communications, 48(12), 1805. doi:10.1039/c2cc16808a

Zhang, M., Guan, J., Zhang, B., Su, D., Williams, C. T., & Liang, C. (2012). Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters, 142(3), 313-318. doi:10.1007/s10562-012-0767-7

Huang, Y., Zheng, Z., Liu, T., Lü, J., Lin, Z., Li, H., & Cao, R. (2011). Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 14(1), 27-31. doi:10.1016/j.catcom.2011.07.004

Huang, Y., Gao, S., Liu, T., Lü, J., Lin, X., Li, H., & Cao, R. (2012). Palladium Nanoparticles Supported on Mixed-Linker Metal-Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 77(2), 106-112. doi:10.1002/cplu.201100021

Henschel, A., Gedrich, K., Kraehnert, R., & Kaskel, S. (2008). Catalytic properties of MIL-101. Chemical Communications, (35), 4192. doi:10.1039/b718371b

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998

Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e

Hermannsdörfer, J., & Kempe, R. (2011). Selective Palladium-Loaded MIL-101 Catalysts. Chemistry - A European Journal, 17(29), 8071-8077. doi:10.1002/chem.201101004

Liu, H., Li, Y., Luque, R., & Jiang, H. (2011). A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. Advanced Synthesis & Catalysis, 353(17), 3107-3113. doi:10.1002/adsc.201100479

Yuan, B., Pan, Y., Li, Y., Yin, B., & Jiang, H. (2010). A Highly Active Heterogeneous Palladium Catalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. Angewandte Chemie International Edition, 49(24), 4054-4058. doi:10.1002/anie.201000576

Huang, Y., Lin, Z., & Cao, R. (2011). Palladium Nanoparticles Encapsulated in a Metal-Organic Framework as Efficient Heterogeneous Catalysts for Direct C2 Arylation of Indoles. Chemistry - A European Journal, 17(45), 12706-12712. doi:10.1002/chem.201101705

Müller, M., Turner, S., Lebedev, O. I., Wang, Y., van Tendeloo, G., & Fischer, R. A. (2011). Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti; x = 1, 2): Preparation and Microstructural Characterisation. European Journal of Inorganic Chemistry, 2011(12), 1876-1887. doi:10.1002/ejic.201001297

Ishida, T., Kawakita, N., Akita, T., & Haruta, M. (2009). One-potN-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bulletin, 42(4), 267-274. doi:10.1007/bf03214948

Liu, H., Liu, Y., Li, Y., Tang, Z., & Jiang, H. (2010). Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. The Journal of Physical Chemistry C, 114(31), 13362-13369. doi:10.1021/jp105666f

Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G., & Fischer, R. A. (2010). Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials, 22(23), 6393-6401. doi:10.1021/cm102529c

Jiang, H.-L., Akita, T., Ishida, T., Haruta, M., & Xu, Q. (2011). Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework. Journal of the American Chemical Society, 133(5), 1304-1306. doi:10.1021/ja1099006

Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u

Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515

Proch, S., Herrmannsdörfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., & Senker, J. (2008). Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chemistry - A European Journal, 14(27), 8204-8212. doi:10.1002/chem.200801043

Zhao, H., Song, H., & Chou, L. (2012). Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 15, 261-265. doi:10.1016/j.inoche.2011.10.040

Park, Y. K., Choi, S. B., Nam, H. J., Jung, D.-Y., Ahn, H. C., Choi, K., … Kim, J. (2010). Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chemical Communications, 46(18), 3086. doi:10.1039/c000775g

Moreno-Mañas, M., & Pleixats, R. (2003). Formation of Carbon−Carbon Bonds under Catalysis by Transition-Metal Nanoparticles. Accounts of Chemical Research, 36(8), 638-643. doi:10.1021/ar020267y

Biffis, A., Zecca, M., & Basato, M. (2001). Palladium metal catalysts in Heck CC coupling reactions. Journal of Molecular Catalysis A: Chemical, 173(1-2), 249-274. doi:10.1016/s1381-1169(01)00153-4

Zlotea, C., Campesi, R., Cuevas, F., Leroy, E., Dibandjo, P., Volkringer, C., … Latroche, M. (2010). Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. Journal of the American Chemical Society, 132(9), 2991-2997. doi:10.1021/ja9084995

Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275

Fu, J., Lu, X., & Savage, P. E. (2011). Hydrothermal Decarboxylation and Hydrogenation of Fatty Acids over Pt/C. ChemSusChem, 4(4), 481-486. doi:10.1002/cssc.201000370

Pattamakomsan, K., Ehret, E., Morfin, F., Gélin, P., Jugnet, Y., Prakash, S., … Aires, F. J. C. S. (2011). Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catalysis Today, 164(1), 28-33. doi:10.1016/j.cattod.2010.10.013

Primo, A., Concepción, P., & Corma, A. (2011). Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chemical Communications, 47(12), 3613. doi:10.1039/c0cc05206j

Qi, S., Cheney, B. A., Zheng, R., Lonergan, W. W., Yu, W., & Chen, J. G. (2011). The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2. Applied Catalysis A: General, 393(1-2), 44-49. doi:10.1016/j.apcata.2010.11.023

Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x

Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454

Miyaura, N., & Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95(7), 2457-2483. doi:10.1021/cr00039a007

Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s

Li, Y., & Yang, R. T. (2007). Gas Adsorption and Storage in Metal−Organic Framework MOF-177. Langmuir, 23(26), 12937-12944. doi:10.1021/la702466d

Fihri, A., Bouhrara, M., Nekoueishahraki, B., Basset, J.-M., & Polshettiwar, V. (2011). Nanocatalysts for Suzuki cross-coupling reactions. Chemical Society Reviews, 40(10), 5181. doi:10.1039/c1cs15079k

Lane, B. S., Brown, M. A., & Sames, D. (2005). Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles:  A Mechanistic Rationale for Regioselectivity. Journal of the American Chemical Society, 127(22), 8050-8057. doi:10.1021/ja043273t

Nadres, E. T., Lazareva, A., & Daugulis, O. (2011). Palladium-Catalyzed Indole, Pyrrole, and Furan Arylation by Aryl Chlorides. The Journal of Organic Chemistry, 76(2), 471-483. doi:10.1021/jo1018969

Abad, A., Corma, A., & García, H. (2007). Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure and Applied Chemistry, 79(11), 1847-1854. doi:10.1351/pac200779111847

Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405

HARUTA, M. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2), 301-309. doi:10.1016/0021-9517(89)90034-1

Jia, C.-J., Liu, Y., Bongard, H., & Schüth, F. (2010). Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH)2and MgO. Journal of the American Chemical Society, 132(5), 1520-1522. doi:10.1021/ja909351e

Pillai, U. (2003). Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide. Applied Catalysis A: General, 245(1), 103-109. doi:10.1016/s0926-860x(02)00617-8

Su, F.-Z., Liu, Y.-M., Wang, L.-C., Cao, Y., He, H.-Y., & Fan, K.-N. (2008). Ga–Al Mixed-Oxide-Supported Gold Nanoparticles with Enhanced Activity for Aerobic Alcohol Oxidation. Angewandte Chemie International Edition, 47(2), 334-337. doi:10.1002/anie.200704370

Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie International Edition, 44(26), 4066-4069. doi:10.1002/anie.200500382

Prati, L., & Martra, G. (1999). New gold catalysts for liquid phase oxidation. Gold Bulletin, 32(3), 96-101. doi:10.1007/bf03216617

Zhou, Z., Flytzani-Stephanopoulos, M., & Saltsburg, H. (2011). Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction. Journal of Catalysis, 280(2), 255-263. doi:10.1016/j.jcat.2011.03.023

Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647

KNELL, A. (1992). CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism. Journal of Catalysis, 137(2), 306-321. doi:10.1016/0021-9517(92)90159-f

Yamaguchi, K., & Mizuno, N. (2002). Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41(23), 4538-4542. doi:10.1002/1521-3773(20021202)41:23<4538::aid-anie4538>3.0.co;2-6

Zhan, B.-Z., White, M. A., Sham, T.-K., Pincock, J. A., Doucet, R. J., Rao, K. V. R., … Cameron, T. S. (2003). Zeolite-Confined Nano-RuO2:  A Green, Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 125(8), 2195-2199. doi:10.1021/ja0282691

Greathouse, J. A., & Allendorf, M. D. (2006). The Interaction of Water with MOF-5 Simulated by Molecular Dynamics. Journal of the American Chemical Society, 128(33), 10678-10679. doi:10.1021/ja063506b

Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h

Becker, R., Parala, H., Hipler, F., Tkachenko, O. P., Klementiev, K. V., Grünert, W., … Fischer, R. A. (2004). MOCVD-Loading of Mesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for Methanol Synthesis. Angewandte Chemie International Edition, 43(21), 2839-2842. doi:10.1002/anie.200351166

Hansen, P. L. (2002). Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals. Science, 295(5562), 2053-2055. doi:10.1126/science.1069325

Park, Y. K., Choi, S. B., Kim, H., Kim, K., Won, B.-H., Choi, K., … Kim, J. (2007). Crystal Structure and Guest Uptake of a Mesoporous Metal–Organic Framework Containing Cages of 3.9 and 4.7 nm in Diameter. Angewandte Chemie International Edition, 46(43), 8230-8233. doi:10.1002/anie.200702324

Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312a

Besson, S., Gacoin, T., Ricolleau, C., & Boilot, J.-P. (2003). Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chemical Communications, (3), 360-361. doi:10.1039/b208357d

Lu, L., Wang, H., Zhou, Y., Xi, S., Zhang, H., Hu, J., & Zhao, B. (2002). Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. Chemical Communications, (2), 144-145. doi:10.1039/b108473a

Hong, B. H. (2001). Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase. Science, 294(5541), 348-351. doi:10.1126/science.1062126

Moon, H. R., Kim, J. H., & Suh, M. P. (2005). Redox-Active Porous Metal-Organic Framework Producing Silver Nanoparticles from AgI Ions at Room Temperature. Angewandte Chemie International Edition, 44(8), 1261-1265. doi:10.1002/anie.200461408

Lee, E. Y., & Suh, M. P. (2004). A Robust Porous Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration. Angewandte Chemie International Edition, 43(21), 2798-2801. doi:10.1002/anie.200353494

Houk, R. J. T., Jacobs, B. W., Gabaly, F. E., Chang, N. N., Talin, A. A., Graham, D. D., … Allendorf, M. D. (2009). Silver Cluster Formation, Dynamics, and Chemistry in Metal−Organic Frameworks. Nano Letters, 9(10), 3413-3418. doi:10.1021/nl901397k

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record