Mostrar el registro sencillo del ítem
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2016-10-03T11:20:40Z | |
dc.date.available | 2016-10-03T11:20:40Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0306-0012 | |
dc.identifier.uri | http://hdl.handle.net/10251/70900 | |
dc.description.abstract | [EN] The present review describes the use of metal-organic frameworks (MOFs) as porous matrices to embed metal nanoparticles (MNPs) and occasionally metal oxide clusters, which are subsequently used as heterogeneous catalysts. The review is organized according to the embedded metal including Pd, Au, Ru, Cu, Pt, Ni and Ag. Emphasis is also given in the various methodologies reported for the formation of the NPs and the characterization techniques. The reactions described with this type of solid catalysts include condensation, hydrogenations, carbon-carbon coupling, alcohol oxidations and methanol synthesis among others. Remaining issues in this field have also been indicated. | es_ES |
dc.description.sponsorship | Financial support from the Spanish DGI (CTQ 2009-11587, CTQ 2010-18671 and CONSOLIDER MULTICAT) is gratefully acknowledged. Funding of European Commission through an integrated FP7 project MACADEMIA (FP7/2007-2013 No. 228862) is also acknowledged. | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Society Reviews | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | POROUS COORDINATION POLYMERS | es_ES |
dc.subject | SUPPORTED GOLD NANOPARTICLES | es_ES |
dc.subject | EFFICIENT HETEROGENEOUS CATALYSTS | es_ES |
dc.subject | AEROBIC ALCOHOL OXIDATION | es_ES |
dc.subject | CHEMICAL-VAPOR-DEPOSITION | es_ES |
dc.subject | CROSS-COUPLING REACTIONS | es_ES |
dc.subject | HIGHLY-ACTIVE CATALYSTS | es_ES |
dc.subject | SILVER NANOPARTICLES | es_ES |
dc.subject | CO OXIDATION | es_ES |
dc.subject | ATMOSPHERIC-PRESSURE | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Catalysis by metal nanoparticles embedded on metal-organic frameworks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c2cs35047e | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2009-11587/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Dhakshinamoorthy, A.; García Gómez, H. (2012). Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews. 41(15):5262-5284. https://doi.org/10.1039/c2cs35047e | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c2cs35047e | es_ES |
dc.description.upvformatpinicio | 5262 | es_ES |
dc.description.upvformatpfin | 5284 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 15 | es_ES |
dc.relation.senia | 240550 | es_ES |
dc.identifier.eissn | 1460-4744 | |
dc.identifier.pmid | 22695806 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279. doi:10.1038/46248 | es_ES |
dc.description.references | Eddaoudi, M., Li, H., & Yaghi, O. M. (2000). Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties. Journal of the American Chemical Society, 122(7), 1391-1397. doi:10.1021/ja9933386 | es_ES |
dc.description.references | Tranchemontagne, D. J., Mendoza-Cortés, J. L., O’Keeffe, M., & Yaghi, O. M. (2009). Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chemical Society Reviews, 38(5), 1257. doi:10.1039/b817735j | es_ES |
dc.description.references | Kitagawa, S., Kitaura, R., & Noro, S. (2004). Functional Porous Coordination Polymers. Angewandte Chemie International Edition, 43(18), 2334-2375. doi:10.1002/anie.200300610 | es_ES |
dc.description.references | Kitagawa, S., Noro, S., & Nakamura, T. (2006). Pore surface engineering of microporous coordination polymers. Chem. Commun., (7), 701-707. doi:10.1039/b511728c | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Mellot-Draznieks, C., Dutour, J., & Férey, G. (2004). Hybrid Organic-Inorganic Frameworks: Routes for Computational Design and Structure Prediction. Angewandte Chemie International Edition, 43(46), 6290-6296. doi:10.1002/anie.200454251 | es_ES |
dc.description.references | Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M., & Kim, J. (2003). Reticular synthesis and the design of new materials. Nature, 423(6941), 705-714. doi:10.1038/nature01650 | es_ES |
dc.description.references | Almeida Paz, F. A., Klinowski, J., Vilela, S. M. F., Tomé, J. P. C., Cavaleiro, J. A. S., & Rocha, J. (2012). Ligand design for functional metal–organic frameworks. Chem. Soc. Rev., 41(3), 1088-1110. doi:10.1039/c1cs15055c | es_ES |
dc.description.references | Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034 | es_ES |
dc.description.references | Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science & Technology, 1(6), 856. doi:10.1039/c1cy00068c | es_ES |
dc.description.references | Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 | es_ES |
dc.description.references | Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080f | es_ES |
dc.description.references | Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u | es_ES |
dc.description.references | Jiang, H.-L., & Xu, Q. (2011). Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 47(12), 3351. doi:10.1039/c0cc05419d | es_ES |
dc.description.references | Ranocchiari, M., & Bokhoven, J. A. van. (2011). Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 13(14), 6388. doi:10.1039/c0cp02394a | es_ES |
dc.description.references | Juan-Alcañiz, J., Gascon, J., & Kapteijn, F. (2012). Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives. Journal of Materials Chemistry, 22(20), 10102. doi:10.1039/c2jm15563j | es_ES |
dc.description.references | Savonnet, M., Camarata, A., Canivet, J., Bazer-Bachi, D., Bats, N., Lecocq, V., … Farrusseng, D. (2012). Tailoring metal–organic framework catalysts by click chemistry. Dalton Transactions, 41(14), 3945. doi:10.1039/c2dt11994c | es_ES |
dc.description.references | Vermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., … De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030g | es_ES |
dc.description.references | Lescouet, T., Kockrick, E., Bergeret, G., Pera-Titus, M., & Farrusseng, D. (2011). Engineering MIL-53(Al) flexibility by controlling amino tags. Dalton Transactions, 40(43), 11359. doi:10.1039/c1dt11700a | es_ES |
dc.description.references | Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g | es_ES |
dc.description.references | Ishida, T., Nagaoka, M., Akita, T., & Haruta, M. (2008). Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 14(28), 8456-8460. doi:10.1002/chem.200800980 | es_ES |
dc.description.references | Ameloot, R., Roeffaers, M. B. J., De Cremer, G., Vermoortele, F., Hofkens, J., Sels, B. F., & De Vos, D. E. (2011). Metal-Organic Framework Single Crystals as Photoactive Matrices for the Generation of Metallic Microstructures. Advanced Materials, 23(15), 1788-1791. doi:10.1002/adma.201100063 | es_ES |
dc.description.references | Tsuruoka, T., Kawasaki, H., Nawafune, H., & Akamatsu, K. (2011). Controlled Self-Assembly of Metal–Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures. ACS Applied Materials & Interfaces, 3(10), 3788-3791. doi:10.1021/am200974t | es_ES |
dc.description.references | El-Shall, M. S., Abdelsayed, V., Khder, A. E. R. S., Hassan, H. M. A., El-Kaderi, H. M., & Reich, T. E. (2009). Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101. Journal of Materials Chemistry, 19(41), 7625. doi:10.1039/b912012b | es_ES |
dc.description.references | Schmid, G. (1992). Large clusters and colloids. Metals in the embryonic state. Chemical Reviews, 92(8), 1709-1727. doi:10.1021/cr00016a002 | es_ES |
dc.description.references | Schröder, F., & Fischer, R. A. (2009). Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles. Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, 77-113. doi:10.1007/128_2009_4 | es_ES |
dc.description.references | Zhao, Y., Zhang, J., Song, J., Li, J., Liu, J., Wu, T., … Han, B. (2011). Ru nanoparticles immobilized on metal–organic framework nanorods by supercritical CO2-methanol solution: highly efficient catalyst. Green Chemistry, 13(8), 2078. doi:10.1039/c1gc15340d | es_ES |
dc.description.references | Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766 | es_ES |
dc.description.references | Campelo, J. M., Luna, D., Luque, R., Marinas, J. M., & Romero, A. A. (2009). Sustainable Preparation of Supported Metal Nanoparticles and Their Applications in Catalysis. ChemSusChem, 2(1), 18-45. doi:10.1002/cssc.200800227 | es_ES |
dc.description.references | Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n | es_ES |
dc.description.references | Xuan, W., Zhu, C., Liu, Y., & Cui, Y. (2012). Mesoporous metal–organic framework materials. Chem. Soc. Rev., 41(5), 1677-1695. doi:10.1039/c1cs15196g | es_ES |
dc.description.references | Li, H., Zhu, Z., Zhang, F., Xie, S., Li, H., Li, P., & Zhou, X. (2011). Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water. ACS Catalysis, 1(11), 1604-1612. doi:10.1021/cs200351p | es_ES |
dc.description.references | Molnár, A. (2011). Efficient, Selective, and Recyclable Palladium Catalysts in Carbon−Carbon Coupling Reactions. Chemical Reviews, 111(3), 2251-2320. doi:10.1021/cr100355b | es_ES |
dc.description.references | Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. doi:10.1039/b809030k | es_ES |
dc.description.references | Corma, A., Díaz-Cabañas, M. J., Martínez-Triguero, J., Rey, F., & Rius, J. (2002). A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 418(6897), 514-517. doi:10.1038/nature00924 | es_ES |
dc.description.references | Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Concepcion, P., & Garcia, H. (2011). Chemical instability of Cu3(BTC)2 by reaction with thiols. Catalysis Communications, 12(11), 1018-1021. doi:10.1016/j.catcom.2011.03.018 | es_ES |
dc.description.references | Pan, Y., Ma, D., Liu, H., Wu, H., He, D., & Li, Y. (2012). Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. Journal of Materials Chemistry, 22(21), 10834. doi:10.1039/c2jm30867c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal Organic Frameworks as Solid Acid Catalysts for Acetalization of Aldehydes with Methanol. Advanced Synthesis & Catalysis, 352(17), 3022-3030. doi:10.1002/adsc.201000537 | es_ES |
dc.description.references | Bernini, M. C., Gándara, F., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., Brusau, E. V., … Monge, M. Á. (2009). Reversible Breaking and Forming of Metal-Ligand Coordination Bonds: Temperature-Triggered Single-Crystal to Single-Crystal Transformation in a Metal-Organic Framework. Chemistry - A European Journal, 15(19), 4896-4905. doi:10.1002/chem.200802385 | es_ES |
dc.description.references | Tan, X., Li, L., Zhang, J., Han, X., Jiang, L., Li, F., & Su, C.-Y. (2012). Three-Dimensional Phosphine Metal–Organic Frameworks Assembled from Cu(I) and Pyridyl Diphosphine. Chemistry of Materials, 24(3), 480-485. doi:10.1021/cm202608f | es_ES |
dc.description.references | JIANG, D., MALLAT, T., KRUMEICH, F., & BAIKER, A. (2008). Copper-based metal-organic framework for the facile ring-opening of epoxides. Journal of Catalysis, 257(2), 390-395. doi:10.1016/j.jcat.2008.05.021 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 | es_ES |
dc.description.references | Tanabe, K. K., & Cohen, S. M. (2010). Modular, Active, and Robust Lewis Acid Catalysts Supported on a Metal−Organic Framework. Inorganic Chemistry, 49(14), 6766-6774. doi:10.1021/ic101125m | es_ES |
dc.description.references | Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Chevreau, H., Horcajada, P., Devic, T., Serre, C., & Garcia, H. (2012). Iron(iii) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catal. Sci. Technol., 2(2), 324-330. doi:10.1039/c2cy00376g | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal organic frameworks as heterogeneous catalysts for the selective N-methylation of aromatic primary amines with dimethyl carbonate. Applied Catalysis A: General, 378(1), 19-25. doi:10.1016/j.apcata.2010.01.042 | es_ES |
dc.description.references | Neogi, S., Sharma, M. K., & Bharadwaj, P. K. (2009). Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A: Chemical, 299(1-2), 1-4. doi:10.1016/j.molcata.2008.10.008 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Claisen-Schmidt Condensation Catalyzed by Metal-Organic Frameworks. Advanced Synthesis & Catalysis, 352(4), 711-717. doi:10.1002/adsc.200900747 | es_ES |
dc.description.references | Aguado, S., Canivet, J., Schuurman, Y., & Farrusseng, D. (2011). Tuning the activity by controlling the wettability of MOF eggshell catalysts: A quantitative structure–activity study. Journal of Catalysis, 284(2), 207-214. doi:10.1016/j.jcat.2011.10.002 | es_ES |
dc.description.references | Tan, Y., Fu, Z., & Zhang, J. (2011). A layered amino-functionalized zinc-terephthalate metal organic framework: Structure, characterization and catalytic performance for Knoevenagel condensation. Inorganic Chemistry Communications, 14(12), 1966-1970. doi:10.1016/j.inoche.2011.09.022 | es_ES |
dc.description.references | Tran, U. P. N., Le, K. K. A., & Phan, N. T. S. (2011). Expanding Applications of Metal−Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction. ACS Catalysis, 1(2), 120-127. doi:10.1021/cs1000625 | es_ES |
dc.description.references | Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 | es_ES |
dc.description.references | Ladrak, T., Smulders, S., Roubeau, O., Teat, S. J., Gamez, P., & Reedijk, J. (2010). Manganese-Based Metal-Organic Frameworks as Heterogeneous Catalysts for the Cyanosilylation of Acetaldehyde. European Journal of Inorganic Chemistry, 2010(24), 3804-3812. doi:10.1002/ejic.201000378 | es_ES |
dc.description.references | Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs: «Click» reactions with Cu-MOF catalysts. Journal of Catalysis, 276(1), 134-140. doi:10.1016/j.jcat.2010.09.010 | es_ES |
dc.description.references | Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040 | es_ES |
dc.description.references | Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 | es_ES |
dc.description.references | Luz, I., Llabrés i Xamena, F. X., & Corma, A. (2012). Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines. Journal of Catalysis, 285(1), 285-291. doi:10.1016/j.jcat.2011.10.001 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., Hwang, Y. K., Seo, Y.-K., Corma, A., & Garcia, H. (2011). Intracrystalline diffusion in Metal Organic Framework during heterogeneous catalysis: Influence of particle size on the activity of MIL-100 (Fe) for oxidation reactions. Dalton Transactions, 40(40), 10719. doi:10.1039/c1dt10826c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Atmospheric‐Pressure, Liquid‐Phase, Selective Aerobic Oxidation of Alkanes Catalysed by Metal–Organic Frameworks. Chemistry – A European Journal, 17(22), 6256-6262. doi:10.1002/chem.201002664 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzyl Amines to Benzyl Imines Catalyzed by Metal-Organic Framework Solids. ChemCatChem, 2(11), 1438-1443. doi:10.1002/cctc.201000175 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2011). Aerobic Oxidation of Styrenes Catalyzed by an Iron Metal Organic Framework. ACS Catalysis, 1(8), 836-840. doi:10.1021/cs200128t | es_ES |
dc.description.references | Xie, M.-H., Yang, X.-L., & Wu, C.-D. (2011). A metalloporphyrin functionalized metal–organic framework for selective oxidization of styrene. Chemical Communications, 47(19), 5521. doi:10.1039/c1cc10461f | es_ES |
dc.description.references | Tonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., … Volkmer, D. (2011). Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 17(31), 8671-8695. doi:10.1002/chem.201003173 | es_ES |
dc.description.references | Saedi, Z., Tangestaninejad, S., Moghadam, M., Mirkhani, V., & Mohammadpoor-Baltork, I. (2012). MIL-101 metal–organic framework: A highly efficient heterogeneous catalyst for oxidative cleavage of alkenes with H2O2. Catalysis Communications, 17, 18-22. doi:10.1016/j.catcom.2011.10.005 | es_ES |
dc.description.references | Beier, M. J., Kleist, W., Wharmby, M. T., Kissner, R., Kimmerle, B., Wright, P. A., … Baiker, A. (2011). Aerobic Epoxidation of Olefins Catalyzed by the Cobalt-Based Metal-Organic Framework STA-12(Co). Chemistry - A European Journal, 18(3), 887-898. doi:10.1002/chem.201101223 | es_ES |
dc.description.references | LLABRESIXAMENA, F., ABAD, A., CORMA, A., & GARCIA, H. (2007). MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 250(2), 294-298. doi:10.1016/j.jcat.2007.06.004 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703 | es_ES |
dc.description.references | Biswas, S., Maes, M., Dhakshinamoorthy, A., Feyand, M., De Vos, D. E., Garcia, H., & Stock, N. (2012). Fuel purification, Lewis acid and aerobic oxidation catalysis performed by a microporous Co-BTT (BTT3− = 1,3,5-benzenetristetrazolate) framework having coordinatively unsaturated sites. Journal of Materials Chemistry, 22(20), 10200. doi:10.1039/c2jm15592c | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259-265. doi:10.1016/j.jcat.2012.02.015 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001 | es_ES |
dc.description.references | Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal-Organic Frameworks (MOFs) as Heterogeneous Catalysts for the Chemoselective Reduction of Carbon-Carbon Multiple Bonds with Hydrazine. Advanced Synthesis & Catalysis, 351(14-15), 2271-2276. doi:10.1002/adsc.200900362 | es_ES |
dc.description.references | Savonnet, M., Aguado, S., Ravon, U., Bazer-Bachi, D., Lecocq, V., Bats, N., … Farrusseng, D. (2009). Solvent free base catalysis and transesterification over basic functionalised Metal-Organic Frameworks. Green Chemistry, 11(11), 1729. doi:10.1039/b915291c | es_ES |
dc.description.references | Gu, J.-M., Kim, W.-S., & Huh, S. (2011). Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Transactions, 40(41), 10826. doi:10.1039/c1dt11274k | es_ES |
dc.description.references | GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 | es_ES |
dc.description.references | Getman, R. B., Bae, Y.-S., Wilmer, C. E., & Snurr, R. Q. (2011). Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 703-723. doi:10.1021/cr200217c | es_ES |
dc.description.references | Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., & Liu, J. (2012). Progress in adsorption-based CO2capture by metal–organic frameworks. Chem. Soc. Rev., 41(6), 2308-2322. doi:10.1039/c1cs15221a | es_ES |
dc.description.references | Suh, M. P., Park, H. J., Prasad, T. K., & Lim, D.-W. (2011). Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 112(2), 782-835. doi:10.1021/cr200274s | es_ES |
dc.description.references | Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., … Serre, C. (2011). Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 112(2), 1232-1268. doi:10.1021/cr200256v | es_ES |
dc.description.references | Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 112(2), 1105-1125. doi:10.1021/cr200324t | es_ES |
dc.description.references | Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190s | es_ES |
dc.description.references | Bétard, A., & Fischer, R. A. (2011). Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews, 112(2), 1055-1083. doi:10.1021/cr200167v | es_ES |
dc.description.references | Bradshaw, D., Garai, A., & Huo, J. (2012). Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem. Soc. Rev., 41(6), 2344-2381. doi:10.1039/c1cs15276a | es_ES |
dc.description.references | Cui, Y., Yue, Y., Qian, G., & Chen, B. (2011). Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 112(2), 1126-1162. doi:10.1021/cr200101d | es_ES |
dc.description.references | Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147 | es_ES |
dc.description.references | Shilov, A. E., & Shul’pin, G. B. (1997). Activation of C−H Bonds by Metal Complexes. Chemical Reviews, 97(8), 2879-2932. doi:10.1021/cr9411886 | es_ES |
dc.description.references | Corma, A., & García, H. (2003). Lewis Acids: From Conventional Homogeneous to Green Homogeneous and Heterogeneous Catalysis. Chemical Reviews, 103(11), 4307-4366. doi:10.1021/cr030680z | es_ES |
dc.description.references | McNamara, C. A., Dixon, M. J., & Bradley, M. (2002). Recoverable Catalysts and Reagents Using Recyclable Polystyrene-Based Supports. Chemical Reviews, 102(10), 3275-3300. doi:10.1021/cr0103571 | es_ES |
dc.description.references | Jüntgen, H. (1986). Activated carbon as catalyst support. Fuel, 65(10), 1436-1446. doi:10.1016/0016-2361(86)90120-1 | es_ES |
dc.description.references | Wachs, I. E. (2005). Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 100(1-2), 79-94. doi:10.1016/j.cattod.2004.12.019 | es_ES |
dc.description.references | Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680h | es_ES |
dc.description.references | Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473 | es_ES |
dc.description.references | Sabo, M., Henschel, A., Fröde, H., Klemm, E., & Kaskel, S. (2007). Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties. Journal of Materials Chemistry, 17(36), 3827. doi:10.1039/b706432b | es_ES |
dc.description.references | Opelt, S., Türk, S., Dietzsch, E., Henschel, A., Kaskel, S., & Klemm, E. (2008). Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catalysis Communications, 9(6), 1286-1290. doi:10.1016/j.catcom.2007.11.019 | es_ES |
dc.description.references | Gao, S., Zhao, N., Shu, M., & Che, S. (2010). Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction. Applied Catalysis A: General, 388(1-2), 196-201. doi:10.1016/j.apcata.2010.08.045 | es_ES |
dc.description.references | Dang, T. T., Zhu, Y., Ghosh, S. C., Chen, A., Chai, C. L. L., & Seayad, A. M. (2012). Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chemical Communications, 48(12), 1805. doi:10.1039/c2cc16808a | es_ES |
dc.description.references | Zhang, M., Guan, J., Zhang, B., Su, D., Williams, C. T., & Liang, C. (2012). Chemical Vapor Deposition of Pd(C3H5)(C5H5) to Synthesize Pd@MOF-5 Catalysts for Suzuki Coupling Reaction. Catalysis Letters, 142(3), 313-318. doi:10.1007/s10562-012-0767-7 | es_ES |
dc.description.references | Huang, Y., Zheng, Z., Liu, T., Lü, J., Lin, Z., Li, H., & Cao, R. (2011). Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catalysis Communications, 14(1), 27-31. doi:10.1016/j.catcom.2011.07.004 | es_ES |
dc.description.references | Huang, Y., Gao, S., Liu, T., Lü, J., Lin, X., Li, H., & Cao, R. (2012). Palladium Nanoparticles Supported on Mixed-Linker Metal-Organic Frameworks as Highly Active Catalysts for Heck Reactions. ChemPlusChem, 77(2), 106-112. doi:10.1002/cplu.201100021 | es_ES |
dc.description.references | Henschel, A., Gedrich, K., Kraehnert, R., & Kaskel, S. (2008). Catalytic properties of MIL-101. Chemical Communications, (35), 4192. doi:10.1039/b718371b | es_ES |
dc.description.references | Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 | es_ES |
dc.description.references | Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061e | es_ES |
dc.description.references | Hermannsdörfer, J., & Kempe, R. (2011). Selective Palladium-Loaded MIL-101 Catalysts. Chemistry - A European Journal, 17(29), 8071-8077. doi:10.1002/chem.201101004 | es_ES |
dc.description.references | Liu, H., Li, Y., Luque, R., & Jiang, H. (2011). A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. Advanced Synthesis & Catalysis, 353(17), 3107-3113. doi:10.1002/adsc.201100479 | es_ES |
dc.description.references | Yuan, B., Pan, Y., Li, Y., Yin, B., & Jiang, H. (2010). A Highly Active Heterogeneous Palladium Catalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. Angewandte Chemie International Edition, 49(24), 4054-4058. doi:10.1002/anie.201000576 | es_ES |
dc.description.references | Huang, Y., Lin, Z., & Cao, R. (2011). Palladium Nanoparticles Encapsulated in a Metal-Organic Framework as Efficient Heterogeneous Catalysts for Direct C2 Arylation of Indoles. Chemistry - A European Journal, 17(45), 12706-12712. doi:10.1002/chem.201101705 | es_ES |
dc.description.references | Müller, M., Turner, S., Lebedev, O. I., Wang, Y., van Tendeloo, G., & Fischer, R. A. (2011). Au@MOF-5 and Au/MOx@MOF-5 (M = Zn, Ti; x = 1, 2): Preparation and Microstructural Characterisation. European Journal of Inorganic Chemistry, 2011(12), 1876-1887. doi:10.1002/ejic.201001297 | es_ES |
dc.description.references | Ishida, T., Kawakita, N., Akita, T., & Haruta, M. (2009). One-potN-alkylation of primary amines to secondary amines by gold clusters supported on porous coordination polymers. Gold Bulletin, 42(4), 267-274. doi:10.1007/bf03214948 | es_ES |
dc.description.references | Liu, H., Liu, Y., Li, Y., Tang, Z., & Jiang, H. (2010). Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. The Journal of Physical Chemistry C, 114(31), 13362-13369. doi:10.1021/jp105666f | es_ES |
dc.description.references | Esken, D., Turner, S., Lebedev, O. I., Van Tendeloo, G., & Fischer, R. A. (2010). Au@ZIFs: Stabilization and Encapsulation of Cavity-Size Matching Gold Clusters inside Functionalized Zeolite Imidazolate Frameworks, ZIFs. Chemistry of Materials, 22(23), 6393-6401. doi:10.1021/cm102529c | es_ES |
dc.description.references | Jiang, H.-L., Akita, T., Ishida, T., Haruta, M., & Xu, Q. (2011). Synergistic Catalysis of Au@Ag Core−Shell Nanoparticles Stabilized on Metal−Organic Framework. Journal of the American Chemical Society, 133(5), 1304-1306. doi:10.1021/ja1099006 | es_ES |
dc.description.references | Schröder, F., Esken, D., Cokoja, M., van den Berg, M. W. E., Lebedev, O. I., Van Tendeloo, G., … Fischer, R. A. (2008). Ruthenium Nanoparticles inside Porous [Zn4O(bdc)3] by Hydrogenolysis of Adsorbed [Ru(cod)(cot)]: A Solid-State Reference System for Surfactant-Stabilized Ruthenium Colloids. Journal of the American Chemical Society, 130(19), 6119-6130. doi:10.1021/ja078231u | es_ES |
dc.description.references | Hermes, S., Schröter, M.-K., Schmid, R., Khodeir, L., Muhler, M., Tissler, A., … Fischer, R. A. (2005). Metal@MOF: Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angewandte Chemie International Edition, 44(38), 6237-6241. doi:10.1002/anie.200462515 | es_ES |
dc.description.references | Proch, S., Herrmannsdörfer, J., Kempe, R., Kern, C., Jess, A., Seyfarth, L., & Senker, J. (2008). Pt@MOF-177: Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chemistry - A European Journal, 14(27), 8204-8212. doi:10.1002/chem.200801043 | es_ES |
dc.description.references | Zhao, H., Song, H., & Chou, L. (2012). Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties. Inorganic Chemistry Communications, 15, 261-265. doi:10.1016/j.inoche.2011.10.040 | es_ES |
dc.description.references | Park, Y. K., Choi, S. B., Nam, H. J., Jung, D.-Y., Ahn, H. C., Choi, K., … Kim, J. (2010). Catalytic nickel nanoparticles embedded in a mesoporous metal–organic framework. Chemical Communications, 46(18), 3086. doi:10.1039/c000775g | es_ES |
dc.description.references | Moreno-Mañas, M., & Pleixats, R. (2003). Formation of Carbon−Carbon Bonds under Catalysis by Transition-Metal Nanoparticles. Accounts of Chemical Research, 36(8), 638-643. doi:10.1021/ar020267y | es_ES |
dc.description.references | Biffis, A., Zecca, M., & Basato, M. (2001). Palladium metal catalysts in Heck CC coupling reactions. Journal of Molecular Catalysis A: Chemical, 173(1-2), 249-274. doi:10.1016/s1381-1169(01)00153-4 | es_ES |
dc.description.references | Zlotea, C., Campesi, R., Cuevas, F., Leroy, E., Dibandjo, P., Volkringer, C., … Latroche, M. (2010). Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. Journal of the American Chemical Society, 132(9), 2991-2997. doi:10.1021/ja9084995 | es_ES |
dc.description.references | Ferey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275 | es_ES |
dc.description.references | Fu, J., Lu, X., & Savage, P. E. (2011). Hydrothermal Decarboxylation and Hydrogenation of Fatty Acids over Pt/C. ChemSusChem, 4(4), 481-486. doi:10.1002/cssc.201000370 | es_ES |
dc.description.references | Pattamakomsan, K., Ehret, E., Morfin, F., Gélin, P., Jugnet, Y., Prakash, S., … Aires, F. J. C. S. (2011). Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catalysis Today, 164(1), 28-33. doi:10.1016/j.cattod.2010.10.013 | es_ES |
dc.description.references | Primo, A., Concepción, P., & Corma, A. (2011). Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2. Chemical Communications, 47(12), 3613. doi:10.1039/c0cc05206j | es_ES |
dc.description.references | Qi, S., Cheney, B. A., Zheng, R., Lonergan, W. W., Yu, W., & Chen, J. G. (2011). The effects of oxide supports on the low temperature hydrogenation activity of acetone over Pt/Ni bimetallic catalysts on SiO2, γ-Al2O3 and TiO2. Applied Catalysis A: General, 393(1-2), 44-49. doi:10.1016/j.apcata.2010.11.023 | es_ES |
dc.description.references | Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x | es_ES |
dc.description.references | Hashmi, A. S. K., & Hutchings, G. J. (2006). Gold Catalysis. Angewandte Chemie International Edition, 45(47), 7896-7936. doi:10.1002/anie.200602454 | es_ES |
dc.description.references | Miyaura, N., & Suzuki, A. (1995). Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chemical Reviews, 95(7), 2457-2483. doi:10.1021/cr00039a007 | es_ES |
dc.description.references | Martin, R., & Buchwald, S. L. (2008). Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands. Accounts of Chemical Research, 41(11), 1461-1473. doi:10.1021/ar800036s | es_ES |
dc.description.references | Li, Y., & Yang, R. T. (2007). Gas Adsorption and Storage in Metal−Organic Framework MOF-177. Langmuir, 23(26), 12937-12944. doi:10.1021/la702466d | es_ES |
dc.description.references | Fihri, A., Bouhrara, M., Nekoueishahraki, B., Basset, J.-M., & Polshettiwar, V. (2011). Nanocatalysts for Suzuki cross-coupling reactions. Chemical Society Reviews, 40(10), 5181. doi:10.1039/c1cs15079k | es_ES |
dc.description.references | Lane, B. S., Brown, M. A., & Sames, D. (2005). Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles: A Mechanistic Rationale for Regioselectivity. Journal of the American Chemical Society, 127(22), 8050-8057. doi:10.1021/ja043273t | es_ES |
dc.description.references | Nadres, E. T., Lazareva, A., & Daugulis, O. (2011). Palladium-Catalyzed Indole, Pyrrole, and Furan Arylation by Aryl Chlorides. The Journal of Organic Chemistry, 76(2), 471-483. doi:10.1021/jo1018969 | es_ES |
dc.description.references | Abad, A., Corma, A., & García, H. (2007). Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure and Applied Chemistry, 79(11), 1847-1854. doi:10.1351/pac200779111847 | es_ES |
dc.description.references | Haruta, M., Kobayashi, T., Sano, H., & Yamada, N. (1987). Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters, 16(2), 405-408. doi:10.1246/cl.1987.405 | es_ES |
dc.description.references | HARUTA, M. (1989). Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis, 115(2), 301-309. doi:10.1016/0021-9517(89)90034-1 | es_ES |
dc.description.references | Jia, C.-J., Liu, Y., Bongard, H., & Schüth, F. (2010). Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH)2and MgO. Journal of the American Chemical Society, 132(5), 1520-1522. doi:10.1021/ja909351e | es_ES |
dc.description.references | Pillai, U. (2003). Oxidation of alcohols over Fe3+/montmorillonite-K10 using hydrogen peroxide. Applied Catalysis A: General, 245(1), 103-109. doi:10.1016/s0926-860x(02)00617-8 | es_ES |
dc.description.references | Su, F.-Z., Liu, Y.-M., Wang, L.-C., Cao, Y., He, H.-Y., & Fan, K.-N. (2008). Ga–Al Mixed-Oxide-Supported Gold Nanoparticles with Enhanced Activity for Aerobic Alcohol Oxidation. Angewandte Chemie International Edition, 47(2), 334-337. doi:10.1002/anie.200704370 | es_ES |
dc.description.references | Abad, A., Concepción, P., Corma, A., & García, H. (2005). A Collaborative Effect between Gold and a Support Induces the Selective Oxidation of Alcohols. Angewandte Chemie International Edition, 44(26), 4066-4069. doi:10.1002/anie.200500382 | es_ES |
dc.description.references | Prati, L., & Martra, G. (1999). New gold catalysts for liquid phase oxidation. Gold Bulletin, 32(3), 96-101. doi:10.1007/bf03216617 | es_ES |
dc.description.references | Zhou, Z., Flytzani-Stephanopoulos, M., & Saltsburg, H. (2011). Decoration with ceria nanoparticles activates inert gold island/film surfaces for the CO oxidation reaction. Journal of Catalysis, 280(2), 255-263. doi:10.1016/j.jcat.2011.03.023 | es_ES |
dc.description.references | Valden, M. (1998). Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science, 281(5383), 1647-1650. doi:10.1126/science.281.5383.1647 | es_ES |
dc.description.references | KNELL, A. (1992). CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism. Journal of Catalysis, 137(2), 306-321. doi:10.1016/0021-9517(92)90159-f | es_ES |
dc.description.references | Yamaguchi, K., & Mizuno, N. (2002). Supported Ruthenium Catalyst for the Heterogeneous Oxidation of Alcohols with Molecular Oxygen. Angewandte Chemie International Edition, 41(23), 4538-4542. doi:10.1002/1521-3773(20021202)41:23<4538::aid-anie4538>3.0.co;2-6 | es_ES |
dc.description.references | Zhan, B.-Z., White, M. A., Sham, T.-K., Pincock, J. A., Doucet, R. J., Rao, K. V. R., … Cameron, T. S. (2003). Zeolite-Confined Nano-RuO2: A Green, Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation. Journal of the American Chemical Society, 125(8), 2195-2199. doi:10.1021/ja0282691 | es_ES |
dc.description.references | Greathouse, J. A., & Allendorf, M. D. (2006). The Interaction of Water with MOF-5 Simulated by Molecular Dynamics. Journal of the American Chemical Society, 128(33), 10678-10679. doi:10.1021/ja063506b | es_ES |
dc.description.references | Müller, M., Hermes, S., Kähler, K., van den Berg, M. W. E., Muhler, M., & Fischer, R. A. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chemistry of Materials, 20(14), 4576-4587. doi:10.1021/cm703339h | es_ES |
dc.description.references | Becker, R., Parala, H., Hipler, F., Tkachenko, O. P., Klementiev, K. V., Grünert, W., … Fischer, R. A. (2004). MOCVD-Loading of Mesoporous Siliceous Matrices with Cu/ZnO: Supported Catalysts for Methanol Synthesis. Angewandte Chemie International Edition, 43(21), 2839-2842. doi:10.1002/anie.200351166 | es_ES |
dc.description.references | Hansen, P. L. (2002). Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals. Science, 295(5562), 2053-2055. doi:10.1126/science.1069325 | es_ES |
dc.description.references | Park, Y. K., Choi, S. B., Kim, H., Kim, K., Won, B.-H., Choi, K., … Kim, J. (2007). Crystal Structure and Guest Uptake of a Mesoporous Metal–Organic Framework Containing Cages of 3.9 and 4.7 nm in Diameter. Angewandte Chemie International Edition, 46(43), 8230-8233. doi:10.1002/anie.200702324 | es_ES |
dc.description.references | Malinsky, M. D., Kelly, K. L., Schatz, G. C., & Van Duyne, R. P. (2001). Chain Length Dependence and Sensing Capabilities of the Localized Surface Plasmon Resonance of Silver Nanoparticles Chemically Modified with Alkanethiol Self-Assembled Monolayers. Journal of the American Chemical Society, 123(7), 1471-1482. doi:10.1021/ja003312a | es_ES |
dc.description.references | Besson, S., Gacoin, T., Ricolleau, C., & Boilot, J.-P. (2003). Silver nanoparticle growth in 3D-hexagonal mesoporous silica films. Chemical Communications, (3), 360-361. doi:10.1039/b208357d | es_ES |
dc.description.references | Lu, L., Wang, H., Zhou, Y., Xi, S., Zhang, H., Hu, J., & Zhao, B. (2002). Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. Chemical Communications, (2), 144-145. doi:10.1039/b108473a | es_ES |
dc.description.references | Hong, B. H. (2001). Ultrathin Single-Crystalline Silver Nanowire Arrays Formed in an Ambient Solution Phase. Science, 294(5541), 348-351. doi:10.1126/science.1062126 | es_ES |
dc.description.references | Moon, H. R., Kim, J. H., & Suh, M. P. (2005). Redox-Active Porous Metal-Organic Framework Producing Silver Nanoparticles from AgI Ions at Room Temperature. Angewandte Chemie International Edition, 44(8), 1261-1265. doi:10.1002/anie.200461408 | es_ES |
dc.description.references | Lee, E. Y., & Suh, M. P. (2004). A Robust Porous Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration. Angewandte Chemie International Edition, 43(21), 2798-2801. doi:10.1002/anie.200353494 | es_ES |
dc.description.references | Houk, R. J. T., Jacobs, B. W., Gabaly, F. E., Chang, N. N., Talin, A. A., Graham, D. D., … Allendorf, M. D. (2009). Silver Cluster Formation, Dynamics, and Chemistry in Metal−Organic Frameworks. Nano Letters, 9(10), 3413-3418. doi:10.1021/nl901397k | es_ES |