- -

Catalysis using multifunctional organosiliceous hybrid materials

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Catalysis using multifunctional organosiliceous hybrid materials

Show full item record

Díaz Morales, UM.; Brunel, D.; Corma Canós, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews. 42(9):4083-4097. https://doi.org/10.1039/c2cs35385g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70902

Files in this item

Item Metadata

Title: Catalysis using multifunctional organosiliceous hybrid materials
Author: Díaz Morales, Urbano Manuel Brunel, Daniel Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] Organic inorganic hybrid materials with different levels of structuration and porous hierarchy and one or several types of active sites in the framework can catalyze multistep chemical processes in a one-pot reactor ...[+]
Subjects: Periodic mesoporous organosilicas , Isocyanurate bridging groups , Organic-inorganic materials , ONE-POT , Functional-groups , Heterogeneus catalysis , Cooperative catalysis , Cascade reactions , Porous materials , Tertiary-amines
Copyrigths: Cerrado
Chemical Society Reviews. (issn: 0306-0012 )
DOI: 10.1039/c2cs35385g
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c2cs35385g
Project ID:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
MICINN/SEV 2012 0267
The authors thank the Spanish Government (Consolider Ingenio 2010-MULTICAT - CSD2009-00050, MAT2011-29020-C02-01 and Subprograma de Apoyo a Centros y Universidades de Excelencia Severo Ochoa - SEV 2012 0267) for the financial ...[+]
Type: Artículo


Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732

Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b [+]
Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732

Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k

Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b

Yang, Q., Liu, J., Zhang, L., & Li, C. (2009). Functionalized periodic mesoporous organosilicas for catalysis. Journal of Materials Chemistry, 19(14), 1945. doi:10.1039/b815012e

Chen, C., Geng, J., Pu, F., Yang, X., Ren, J., & Qu, X. (2010). Polyvalent Nucleic Acid/Mesoporous Silica Nanoparticle Conjugates: Dual Stimuli-Responsive Vehicles for Intracellular Drug Delivery. Angewandte Chemie, 123(4), 912-916. doi:10.1002/ange.201005471

Macario, A., Katovic, A., Giordano, G., Forni, L., Carloni, F., Filippini, A., & Setti, L. (2005). Immobilization of Lipase on microporous and mesoporous materials: studies of the support surfaces. Studies in Surface Science and Catalysis, 381-394. doi:10.1016/s0167-2991(05)80166-1

Frontera, P., Macario, A., Aloise, A., Crea, F., Antonucci, P. L., Nagy, J. B., … Giordano, G. (2012). Catalytic dry-reforming on Ni–zeolite supported catalyst. Catalysis Today, 179(1), 52-60. doi:10.1016/j.cattod.2011.07.039

Macario, A., Verri, F., Diaz, U., Corma, A., & Giordano, G. (2013). Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production. Catalysis Today, 204, 148-155. doi:10.1016/j.cattod.2012.07.014

Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034

Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m

Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013

Harrison, P. G., & Kannengiesser, R. (1996). Porous materials derived from trigonal-prismatic [Si6O9] and cubane [Si8O12] cage monomers. Chemical Communications, (3), 415. doi:10.1039/cc9960000415

Corma, A., & Garcia, H. (2004). Supramolecular Host-Guest Systems in Zeolites Prepared by Ship-in-a-Bottle Synthesis. European Journal of Inorganic Chemistry, 2004(6), 1143-1164. doi:10.1002/ejic.200300831

Díaz, U., García, T., Velty, A., & Corma, A. (2012). Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers. Chemistry - A European Journal, 18(28), 8659-8672. doi:10.1002/chem.201200170

MacLachlan, M. J., Asefa, T., & Ozin, G. A. (2000). Writing on the Wall with a New Synthetic Quill. Chemistry - A European Journal, 6(14), 2507-2511. doi:10.1002/1521-3765(20000717)6:14<2507::aid-chem2507>3.0.co;2-9

Shylesh, S., Samuel, P. P., Sisodiya, S., & Singh, A. P. (2008). Periodic Mesoporous Silicas and Organosilicas: An Overview Towards Catalysis. Catalysis Surveys from Asia, 12(4), 266-282. doi:10.1007/s10563-008-9056-2

Kadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080s

(s. f.). doi:10.1021/jp971366

Iapichella, J., Meneses, J.-M., Beurroies, I., Denoyel, R., Bayram-Hahn, Z., Unger, K., & Galarneau, A. (2007). Characterization of mesoporous silica and its pseudomorphically transformed derivative by gas and liquid adsorption. Microporous and Mesoporous Materials, 102(1-3), 111-121. doi:10.1016/j.micromeso.2006.12.026

Climent, M. J., Corma, A., & Iborra, S. (2009). Mono- and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2(6), 500-506. doi:10.1002/cssc.200800259

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075

Fujita, S., & Inagaki, S. (2008). Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities†. Chemistry of Materials, 20(3), 891-908. doi:10.1021/cm702271v

Kapoor, M. P., Inagaki, S., Ikeda, S., Kakiuchi, K., Suda, M., & Shimada, T. (2005). An Alternate Route for the Synthesis of Hybrid Mesoporous Organosilica with Crystal-Like Pore Walls from Allylorganosilane Precursors. Journal of the American Chemical Society, 127(22), 8174-8178. doi:10.1021/ja043062o

Shylesh, S., & Thiel, W. R. (2010). Bifunctional Acid-Base Cooperativity in Heterogeneous Catalytic Reactions: Advances in Silica Supported Organic Functional Groups. ChemCatChem, 3(2), 278-287. doi:10.1002/cctc.201000353

Notestein, J. M., & Katz, A. (2006). Enhancing Heterogeneous Catalysis through Cooperative Hybrid Organic–Inorganic Interfaces. Chemistry - A European Journal, 12(15), 3954-3965. doi:10.1002/chem.200501152

Margelefsky, E. L., Zeidan, R. K., & Davis, M. E. (2008). Cooperative catalysis by silica-supported organic functional groups. Chemical Society Reviews, 37(6), 1118. doi:10.1039/b710334b

Fuerte, A. (2004). Chiral dioxomolybdenum(VI) and oxovanadium(V) complexes anchored on modified USY-zeolite and mesoporous MCM-41 as solid selective catalysts for oxidation of sulfides to sulfoxides or sulfones. Journal of Molecular Catalysis A: Chemical, 211(1-2), 227-235. doi:10.1016/j.molcata.2003.10.013

González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2005). Enantioselective hydrogenation of alkenes and imines by a gold catalyst. Chemical Communications, (27), 3451. doi:10.1039/b505271h

Corma, A., Iglesias, M., & S�nchez, F. (1995). Hydrogenation of aromatics under mild conditions on transition metal complexes in zeolites. A cooperative effect of molecular sieves. Catalysis Letters, 32(3-4), 313-318. doi:10.1007/bf00813225

Huh, S., Chen, H.-T., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System. Journal of the American Chemical Society, 126(4), 1010-1011. doi:10.1021/ja0398161

Bass, J. D., Anderson, S. L., & Katz, A. (2003). The Effect of Outer-Sphere Acidity on Chemical Reactivity in a Synthetic Heterogeneous Base Catalyst. Angewandte Chemie International Edition, 42(42), 5219-5222. doi:10.1002/anie.200352181

Motokura, K., Tomita, M., Tada, M., & Iwasawa, Y. (2009). Michael Reactions Catalyzed by Basic Alkylamines and Dialkylaminopyridine Immobilized on Acidic Silica–Alumina Surfaces. Topics in Catalysis, 52(6-7), 579-585. doi:10.1007/s11244-009-9190-8

Motokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie International Edition, 47(48), 9230-9235. doi:10.1002/anie.200802515

Motokura, K., Tanaka, S., Tada, M., & Iwasawa, Y. (2009). Bifunctional Heterogeneous Catalysis of Silica-Alumina-Supported Tertiary Amines with Controlled Acid-Base Interactions for Efficient 1,4-Addition Reactions. Chemistry - A European Journal, 15(41), 10871-10879. doi:10.1002/chem.200901380

McDonald, A. R., Müller, C., Vogt, D., van Klink, G. P. M., & van Koten, G. (2008). BINAP-Ru and -Rh catalysts covalently immobilised on silica and their repeated application in asymmetric hydrogenation. Green Chemistry, 10(4), 424. doi:10.1039/b714189k

Noyori, R., & Takaya, H. (1990). BINAP: an efficient chiral element for asymmetric catalysis. Accounts of Chemical Research, 23(10), 345-350. doi:10.1021/ar00178a005

Abbenhuis, H. C. L. (1999). Heterogenization of Metallocene Catalysts for Alkene Polymerization. Angewandte Chemie International Edition, 38(8), 1058-1060. doi:10.1002/(sici)1521-3773(19990419)38:8<1058::aid-anie1058>3.0.co;2-8

Scott, S. L., Church, T. L., Nguyen, D. H., Mader, E. A., & Moran, J. (2005). An investigation of catalyst/cocatalyst/support interactions in silica-supported olefin polymerization catalysts based on Cp*TiMe3*. Topics in Catalysis, 34(1-4), 109-120. doi:10.1007/s11244-005-3804-6

González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029

McKittrick, M. W., & Jones, C. W. (2005). Modulating the Reactivity of an Organometallic Catalyst via Immobilization on a Spatially Patterned Silica Surface. Chemistry of Materials, 17(19), 4758-4761. doi:10.1021/cm050925j

Ayala, V., Corma, A., Iglesias, M., Rincón, J. A., & Sánchez, F. (2004). Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 224(1), 170-177. doi:10.1016/j.jcat.2004.02.017

Han, L., Ruan, J., Li, Y., Terasaki, O., & Che, S. (2007). Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica. Chemistry of Materials, 19(11), 2860-2867. doi:10.1021/cm0705845

Colilla, M., Izquierdo-Barba, I., Sánchez-Salcedo, S., Fierro, J. L. G., Hueso, J. L., & Vallet-Regí, M. (2010). Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials. Chemistry of Materials, 22(23), 6459-6466. doi:10.1021/cm102827y

Sharma, K. K., & Asefa, T. (2007). Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials. Angewandte Chemie International Edition, 46(16), 2879-2882. doi:10.1002/anie.200604570

Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R., & Rothenberg, G. (2011). Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angewandte Chemie International Edition, 50(41), 9615-9619. doi:10.1002/anie.201101449

Villaverde, G., Corma, A., Iglesias, M., & Sánchez, F. (2012). Heterogenized Gold Complexes: Recoverable Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes, and Amines. ACS Catalysis, 2(3), 399-406. doi:10.1021/cs200601w

Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F., & Snejko, N. (2011). Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 40(37), 9589. doi:10.1039/c1dt10597c

Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658

Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867-871. doi:10.1038/47229

Melde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935

Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Periodic Mesoporous Organosilicas (PMOs): Past, Present, and Future. Journal of Nanoscience and Nanotechnology, 6(2), 265-288. doi:10.1166/jnn.2006.902

Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a

Baleizão, C., Gigante, B., Das, D., Alvaro, M., Garcia, H., & Corma, A. (2003). Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). Chem. Commun., (15), 1860-1861. doi:10.1039/b304814d

Baleizão, C. (2004). Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. Journal of Catalysis, 223(1), 106-113. doi:10.1016/j.jcat.2004.01.016

Burleigh, M. C., Markowitz, M. A., Spector, M. S., & Gaber, B. P. (2001). Direct Synthesis of Periodic Mesoporous Organosilicas:  Functional Incorporation by Co-condensation with Organosilanes. The Journal of Physical Chemistry B, 105(41), 9935-9942. doi:10.1021/jp011814k

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

Asefa, T., Kruk, M., MacLachlan, M. J., Coombs, N., Grondey, H., Jaroniec, M., & Ozin, G. A. (2001). Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs:  Synthesis, Characterization, Properties and in-Situ Selective Hydroboration−Alcoholysis Reactions of Functional Groups. Journal of the American Chemical Society, 123(35), 8520-8530. doi:10.1021/ja0037320

Olkhovyk, O., Pikus, S., & Jaroniec, M. (2005). Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups and mercaptopropyl ligands. Journal of Materials Chemistry, 15(15), 1517. doi:10.1039/b500058k

Grudzien, R. M., Grabicka, B. E., Pikus, S., & Jaroniec, M. (2006). Periodic Mesoporous Organosilicas with Ethane and Large Isocyanurate Bridging Groups. Chemistry of Materials, 18(7), 1722-1725. doi:10.1021/cm052717x

Grudzien, R. M., Blitz, J. P., Pikus, S., & Jaroniec, M. (2009). Cage-like ordered mesoporous organosilicas with isocyanurate bridging groups: Synthesis, template removal and structural properties. Microporous and Mesoporous Materials, 118(1-3), 68-77. doi:10.1016/j.micromeso.2008.08.017

Cho, E.-B., Kim, D., & Jaroniec, M. (2009). Bifunctional Periodic Mesoporous Organosilicas with Thiophene and Isocyanurate Bridging Groups. Langmuir, 25(22), 13258-13263. doi:10.1021/la902089c

Zhang, W.-H., Zhang, X., Hua, Z., Harish, P., Schroeder, F., Hermes, S., … Fischer, R. A. (2007). Synthesis, Bifunctionalization, and Application of Isocyanurate-Based Periodic Mesoporous Organosilicas. Chemistry of Materials, 19(10), 2663-2670. doi:10.1021/cm061922p

Olkhovyk, O., & Jaroniec, M. (2007). Polymer-Templated Mesoporous Organosilicas with Two Types of Multifunctional Organic Groups. Industrial & Engineering Chemistry Research, 46(6), 1745-1751. doi:10.1021/ie061244g

Morell, J., Güngerich, M., Wolter, G., Jiao, J., Hunger, M., Klar, P. J., & Fröba, M. (2006). Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes. J. Mater. Chem., 16(27), 2809-2818. doi:10.1039/b603458f

Cho, E.-B., & Kim, D. (2008). Multifunctional periodic mesoporous organosilicas prepared with block copolymer: Composition effect on morphology. Microporous and Mesoporous Materials, 113(1-3), 530-537. doi:10.1016/j.micromeso.2007.12.010

Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2006). Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation. Journal of the American Chemical Society, 128(27), 8718-8719. doi:10.1021/ja0622960

Kuschel, A., Drescher, M., Kuschel, T., & Polarz, S. (2010). Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not? Chemistry of Materials, 22(4), 1472-1482. doi:10.1021/cm903412e

Shylesh, S., Wagener, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions. Angewandte Chemie International Edition, 49(1), 184-187. doi:10.1002/anie.200903985

Mouawia, R., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2008). Bifunctional ordered mesoporous materials: direct synthesis and study of the distribution of two distinct functional groups in the pore channels. Journal of Materials Chemistry, 18(35), 4193. doi:10.1039/b807793b

Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2007). Direct synthesis of bifunctional mesoporous organosilicas containing chelating groups in the framework and reactive functional groups in the channel pores. J. Mater. Chem., 17(4), 349-356. doi:10.1039/b613804g

Yang, H., Li, G., Ma, Z., Chao, J., & Guo, Z. (2010). Three-dimensional cubic mesoporous materials with a built-in N-heterocyclic carbene for Suzuki–Miyaura coupling of aryl chlorides and C(sp3)-chlorides. Journal of Catalysis, 276(1), 123-133. doi:10.1016/j.jcat.2010.09.004

Zhao, H., Yu, N., Wang, J., Zhuang, D., Ding, Y., Tan, R., & Yin, D. (2009). Preparation and catalytic activity of periodic mesoporous organosilica incorporating Lewis acidic chloroindate(III) ionic liquid moieties. Microporous and Mesoporous Materials, 122(1-3), 240-246. doi:10.1016/j.micromeso.2009.03.006

Nguyen, T. P., Hesemann, P., Gaveau, P., & Moreau, J. J. E. (2009). Periodic mesoporous organosilica containing ionic bis-aryl-imidazolium entities: Heterogeneous precursors for silica-hybrid-supported NHC complexes. Journal of Materials Chemistry, 19(24), 4164. doi:10.1039/b900431a

Trilla, M., Pleixats, R., Man, M. W. C., & Bied, C. (2009). Organic–inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations. Green Chemistry, 11(11), 1815. doi:10.1039/b916767f

Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519

Corma, A., Boronat, M., Climent, M. J., Iborra, S., Montón, R., & Sabater, M. J. (2011). A recyclable bifunctional acid–base organocatalyst with ionic liquid character. The role of site separation and spatial configuration on different condensation reactions. Physical Chemistry Chemical Physics, 13(38), 17255. doi:10.1039/c1cp21986c

Shin, J. Y., Lee, B. S., Jung, Y., Kim, S. J., & Lee, S. (2007). Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band. Chemical Communications, (48), 5238. doi:10.1039/b711237h

Liu, J., Yang, H. Q., Kleitz, F., Chen, Z. G., Yang, T., Strounina, E., … Qiao, S. Z. (2011). Yolk-Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. Advanced Functional Materials, 22(3), 591-599. doi:10.1002/adfm.201101900

Karimi, B., & Kabiri Esfahani, F. (2011). Unexpected golden Ullmann reaction catalyzed by Au nanoparticles supported on periodic mesoporous organosilica (PMO). Chemical Communications, 47(37), 10452. doi:10.1039/c1cc12566d

Zhu, F.-X., Wang, W., & Li, H.-X. (2011). Water-Medium and Solvent-Free Organic Reactions over a Bifunctional Catalyst with Au Nanoparticles Covalently Bonded to HS/SO3H Functionalized Periodic Mesoporous Organosilica. Journal of the American Chemical Society, 133(30), 11632-11640. doi:10.1021/ja203450g

Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2005). Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 15(35-36), 3650. doi:10.1039/b505640n

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774

Corma, A., Martı́nez, A., & Martı́nez-Soria, V. (2001). Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes. Journal of Catalysis, 200(2), 259-269. doi:10.1006/jcat.2001.3219

Climent, M. J., Corma, A., & Velty, A. (2004). Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 263(2), 155-161. doi:10.1016/j.apcata.2003.12.007

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Motokura, K., Tada, M., & Iwasawa, Y. (2009). Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences. Journal of the American Chemical Society, 131(23), 7944-7945. doi:10.1021/ja9012003

Zhong, C., & Shi, X. (2010). When Organocatalysis Meets Transition-Metal Catalysis. European Journal of Organic Chemistry, 2010(16), 2999-3025. doi:10.1002/ejoc.201000004

Motokura, K., Fujita, N., Mori, K., Mizugaki, T., Ebitani, K., & Kaneda, K. (2005). An Acidic Layered Clay Is Combined with A Basic Layered Clay for One-Pot Sequential Reactions. Journal of the American Chemical Society, 127(27), 9674-9675. doi:10.1021/ja052386p

Phan, N. T. S., Gill, C. S., Nguyen, J. V., Zhang, Z. J., & Jones, C. W. (2006). Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angewandte Chemie International Edition, 45(14), 2209-2212. doi:10.1002/anie.200503445

Huang, Y., Trewyn, B. G., Chen, H.-T., & Lin, V. S.-Y. (2008). One-pot reaction cascades catalyzed by base- and acid-functionalized mesoporous silica nanoparticles. New Journal of Chemistry, 32(8), 1311. doi:10.1039/b806664g

Takagaki, A., Ohara, M., Nishimura, S., & Ebitani, K. (2009). A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chemical Communications, (41), 6276. doi:10.1039/b914087e

Gelman, F., Blum, J., & Avnir, D. (2001). Acids and Bases in One Pot while Avoiding Their Mutual Destruction We gratefully acknowledge support from the Israel Science Foundation (grant 96-98-2) and from the Infrastructure (Tashtiot) Project of the Israel Ministry for Science, Arts and Sports; and from the German–Israeli Foundation for Scientific Research and Development (Grant No. I-530.045.05/97). Angewandte Chemie International Edition, 40(19), 3647. doi:10.1002/1521-3773(20011001)40:19<3647::aid-anie3647>3.0.co;2-a

Chandrasekhar, S., Mallikarjun, K., Pavankumarreddy, G., Rao, K. V., & Jagadeesh, B. (2009). Enantiopure cycloalkane fused tetrahydropyrans through domino Michael–ketalizations with organocatalysis. Chemical Communications, (33), 4985. doi:10.1039/b904662c

Grondal, C., Jeanty, M., & Enders, D. (2010). Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chemistry, 2(3), 167-178. doi:10.1038/nchem.539




This item appears in the following Collection(s)

Show full item record