Mostrar el registro sencillo del ítem
dc.contributor.author | Díaz Morales, Urbano Manuel | es_ES |
dc.contributor.author | Brunel, Daniel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2016-10-03T11:23:22Z | |
dc.date.available | 2016-10-03T11:23:22Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0306-0012 | |
dc.identifier.uri | http://hdl.handle.net/10251/70902 | |
dc.description.abstract | [EN] Organic inorganic hybrid materials with different levels of structuration and porous hierarchy and one or several types of active sites in the framework can catalyze multistep chemical processes in a one-pot reactor system following a cascade of reaction events. It will show how the different active sites can act in a synergistic or in a consecutive way following a similar functionality model to biological multisite catalysts. Research on this subject for heterogeneous catalysts is still in the beginning stage and very interesting results can be expected if we are able to successfully combine the properties of organic and inorganic catalysts. | es_ES |
dc.description.sponsorship | The authors thank the Spanish Government (Consolider Ingenio 2010-MULTICAT - CSD2009-00050, MAT2011-29020-C02-01 and Subprograma de Apoyo a Centros y Universidades de Excelencia Severo Ochoa - SEV 2012 0267) for the financial support. | |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Chemical Society Reviews | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Periodic mesoporous organosilicas | es_ES |
dc.subject | Isocyanurate bridging groups | es_ES |
dc.subject | Organic-inorganic materials | es_ES |
dc.subject | ONE-POT | es_ES |
dc.subject | Functional-groups | es_ES |
dc.subject | Heterogeneus catalysis | es_ES |
dc.subject | Cooperative catalysis | es_ES |
dc.subject | Cascade reactions | es_ES |
dc.subject | Porous materials | es_ES |
dc.subject | Tertiary-amines | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Catalysis using multifunctional organosiliceous hybrid materials | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c2cs35385g | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-29020-C02-01/ES/CATALIZADORES HIBRIDOS MULTIFUNCIONALES BASADOS EN UNIDADES ESTRUCTURALES ORGANICAS-INORGANICAS UTILIZADOS EN REACCIONES CASCADA/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Díaz Morales, UM.; Brunel, D.; Corma Canós, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews. 42(9):4083-4097. https://doi.org/10.1039/c2cs35385g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c2cs35385g | es_ES |
dc.description.upvformatpinicio | 4083 | es_ES |
dc.description.upvformatpfin | 4097 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 42 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 236237 | es_ES |
dc.identifier.pmid | 23288312 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732 | es_ES |
dc.description.references | Sanchez, C., Julián, B., Belleville, P., & Popall, M. (2005). Applications of hybrid organic–inorganic nanocomposites. Journal of Materials Chemistry, 15(35-36), 3559. doi:10.1039/b509097k | es_ES |
dc.description.references | Férey, G. (2008). Hybrid porous solids: past, present, future. Chem. Soc. Rev., 37(1), 191-214. doi:10.1039/b618320b | es_ES |
dc.description.references | Yang, Q., Liu, J., Zhang, L., & Li, C. (2009). Functionalized periodic mesoporous organosilicas for catalysis. Journal of Materials Chemistry, 19(14), 1945. doi:10.1039/b815012e | es_ES |
dc.description.references | Chen, C., Geng, J., Pu, F., Yang, X., Ren, J., & Qu, X. (2010). Polyvalent Nucleic Acid/Mesoporous Silica Nanoparticle Conjugates: Dual Stimuli-Responsive Vehicles for Intracellular Drug Delivery. Angewandte Chemie, 123(4), 912-916. doi:10.1002/ange.201005471 | es_ES |
dc.description.references | Macario, A., Katovic, A., Giordano, G., Forni, L., Carloni, F., Filippini, A., & Setti, L. (2005). Immobilization of Lipase on microporous and mesoporous materials: studies of the support surfaces. Studies in Surface Science and Catalysis, 381-394. doi:10.1016/s0167-2991(05)80166-1 | es_ES |
dc.description.references | Frontera, P., Macario, A., Aloise, A., Crea, F., Antonucci, P. L., Nagy, J. B., … Giordano, G. (2012). Catalytic dry-reforming on Ni–zeolite supported catalyst. Catalysis Today, 179(1), 52-60. doi:10.1016/j.cattod.2011.07.039 | es_ES |
dc.description.references | Macario, A., Verri, F., Diaz, U., Corma, A., & Giordano, G. (2013). Pure silica nanoparticles for liposome/lipase system encapsulation: Application in biodiesel production. Catalysis Today, 204, 148-155. doi:10.1016/j.cattod.2012.07.014 | es_ES |
dc.description.references | Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 73(1-2), 3-14. doi:10.1016/j.micromeso.2004.03.034 | es_ES |
dc.description.references | Wight, A. P., & Davis, M. E. (2002). Design and Preparation of Organic−Inorganic Hybrid Catalysts. Chemical Reviews, 102(10), 3589-3614. doi:10.1021/cr010334m | es_ES |
dc.description.references | Loy, D. A., & Shea, K. J. (1995). Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials. Chemical Reviews, 95(5), 1431-1442. doi:10.1021/cr00037a013 | es_ES |
dc.description.references | Harrison, P. G., & Kannengiesser, R. (1996). Porous materials derived from trigonal-prismatic [Si6O9] and cubane [Si8O12] cage monomers. Chemical Communications, (3), 415. doi:10.1039/cc9960000415 | es_ES |
dc.description.references | Corma, A., & Garcia, H. (2004). Supramolecular Host-Guest Systems in Zeolites Prepared by Ship-in-a-Bottle Synthesis. European Journal of Inorganic Chemistry, 2004(6), 1143-1164. doi:10.1002/ejic.200300831 | es_ES |
dc.description.references | Díaz, U., García, T., Velty, A., & Corma, A. (2012). Synthesis and Catalytic Properties of Hybrid Mesoporous Materials Assembled from Polyhedral and Bridged Silsesquioxane Monomers. Chemistry - A European Journal, 18(28), 8659-8672. doi:10.1002/chem.201200170 | es_ES |
dc.description.references | MacLachlan, M. J., Asefa, T., & Ozin, G. A. (2000). Writing on the Wall with a New Synthetic Quill. Chemistry - A European Journal, 6(14), 2507-2511. doi:10.1002/1521-3765(20000717)6:14<2507::aid-chem2507>3.0.co;2-9 | es_ES |
dc.description.references | Shylesh, S., Samuel, P. P., Sisodiya, S., & Singh, A. P. (2008). Periodic Mesoporous Silicas and Organosilicas: An Overview Towards Catalysis. Catalysis Surveys from Asia, 12(4), 266-282. doi:10.1007/s10563-008-9056-2 | es_ES |
dc.description.references | Kadib, A. E., Molvinger, K., Guimon, C., Quignard, F., & Brunel, D. (2008). Design of Stable Nanoporous Hybrid Chitosan/Titania as Cooperative Bifunctional Catalysts. Chemistry of Materials, 20(6), 2198-2204. doi:10.1021/cm800080s | es_ES |
dc.description.references | (s. f.). doi:10.1021/jp971366 | es_ES |
dc.description.references | Iapichella, J., Meneses, J.-M., Beurroies, I., Denoyel, R., Bayram-Hahn, Z., Unger, K., & Galarneau, A. (2007). Characterization of mesoporous silica and its pseudomorphically transformed derivative by gas and liquid adsorption. Microporous and Mesoporous Materials, 102(1-3), 111-121. doi:10.1016/j.micromeso.2006.12.026 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2009). Mono- and Multisite Solid Catalysts in Cascade Reactions for Chemical Process Intensification. ChemSusChem, 2(6), 500-506. doi:10.1002/cssc.200800259 | es_ES |
dc.description.references | Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition, 45(20), 3216-3251. doi:10.1002/anie.200503075 | es_ES |
dc.description.references | Fujita, S., & Inagaki, S. (2008). Self-Organization of Organosilica Solids with Molecular-Scale and Mesoscale Periodicities†. Chemistry of Materials, 20(3), 891-908. doi:10.1021/cm702271v | es_ES |
dc.description.references | Kapoor, M. P., Inagaki, S., Ikeda, S., Kakiuchi, K., Suda, M., & Shimada, T. (2005). An Alternate Route for the Synthesis of Hybrid Mesoporous Organosilica with Crystal-Like Pore Walls from Allylorganosilane Precursors. Journal of the American Chemical Society, 127(22), 8174-8178. doi:10.1021/ja043062o | es_ES |
dc.description.references | Shylesh, S., & Thiel, W. R. (2010). Bifunctional Acid-Base Cooperativity in Heterogeneous Catalytic Reactions: Advances in Silica Supported Organic Functional Groups. ChemCatChem, 3(2), 278-287. doi:10.1002/cctc.201000353 | es_ES |
dc.description.references | Notestein, J. M., & Katz, A. (2006). Enhancing Heterogeneous Catalysis through Cooperative Hybrid Organic–Inorganic Interfaces. Chemistry - A European Journal, 12(15), 3954-3965. doi:10.1002/chem.200501152 | es_ES |
dc.description.references | Margelefsky, E. L., Zeidan, R. K., & Davis, M. E. (2008). Cooperative catalysis by silica-supported organic functional groups. Chemical Society Reviews, 37(6), 1118. doi:10.1039/b710334b | es_ES |
dc.description.references | Fuerte, A. (2004). Chiral dioxomolybdenum(VI) and oxovanadium(V) complexes anchored on modified USY-zeolite and mesoporous MCM-41 as solid selective catalysts for oxidation of sulfides to sulfoxides or sulfones. Journal of Molecular Catalysis A: Chemical, 211(1-2), 227-235. doi:10.1016/j.molcata.2003.10.013 | es_ES |
dc.description.references | González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2005). Enantioselective hydrogenation of alkenes and imines by a gold catalyst. Chemical Communications, (27), 3451. doi:10.1039/b505271h | es_ES |
dc.description.references | Corma, A., Iglesias, M., & S�nchez, F. (1995). Hydrogenation of aromatics under mild conditions on transition metal complexes in zeolites. A cooperative effect of molecular sieves. Catalysis Letters, 32(3-4), 313-318. doi:10.1007/bf00813225 | es_ES |
dc.description.references | Huh, S., Chen, H.-T., Wiench, J. W., Pruski, M., & Lin, V. S.-Y. (2004). Controlling the Selectivity of Competitive Nitroaldol Condensation by Using a Bifunctionalized Mesoporous Silica Nanosphere-Based Catalytic System. Journal of the American Chemical Society, 126(4), 1010-1011. doi:10.1021/ja0398161 | es_ES |
dc.description.references | Bass, J. D., Anderson, S. L., & Katz, A. (2003). The Effect of Outer-Sphere Acidity on Chemical Reactivity in a Synthetic Heterogeneous Base Catalyst. Angewandte Chemie International Edition, 42(42), 5219-5222. doi:10.1002/anie.200352181 | es_ES |
dc.description.references | Motokura, K., Tomita, M., Tada, M., & Iwasawa, Y. (2009). Michael Reactions Catalyzed by Basic Alkylamines and Dialkylaminopyridine Immobilized on Acidic Silica–Alumina Surfaces. Topics in Catalysis, 52(6-7), 579-585. doi:10.1007/s11244-009-9190-8 | es_ES |
dc.description.references | Motokura, K., Tada, M., & Iwasawa, Y. (2008). Cooperative Catalysis of Primary and Tertiary Amines Immobilized on Oxide Surfaces for One-Pot CC Bond Forming Reactions. Angewandte Chemie International Edition, 47(48), 9230-9235. doi:10.1002/anie.200802515 | es_ES |
dc.description.references | Motokura, K., Tanaka, S., Tada, M., & Iwasawa, Y. (2009). Bifunctional Heterogeneous Catalysis of Silica-Alumina-Supported Tertiary Amines with Controlled Acid-Base Interactions for Efficient 1,4-Addition Reactions. Chemistry - A European Journal, 15(41), 10871-10879. doi:10.1002/chem.200901380 | es_ES |
dc.description.references | McDonald, A. R., Müller, C., Vogt, D., van Klink, G. P. M., & van Koten, G. (2008). BINAP-Ru and -Rh catalysts covalently immobilised on silica and their repeated application in asymmetric hydrogenation. Green Chemistry, 10(4), 424. doi:10.1039/b714189k | es_ES |
dc.description.references | Noyori, R., & Takaya, H. (1990). BINAP: an efficient chiral element for asymmetric catalysis. Accounts of Chemical Research, 23(10), 345-350. doi:10.1021/ar00178a005 | es_ES |
dc.description.references | Abbenhuis, H. C. L. (1999). Heterogenization of Metallocene Catalysts for Alkene Polymerization. Angewandte Chemie International Edition, 38(8), 1058-1060. doi:10.1002/(sici)1521-3773(19990419)38:8<1058::aid-anie1058>3.0.co;2-8 | es_ES |
dc.description.references | Scott, S. L., Church, T. L., Nguyen, D. H., Mader, E. A., & Moran, J. (2005). An investigation of catalyst/cocatalyst/support interactions in silica-supported olefin polymerization catalysts based on Cp*TiMe3*. Topics in Catalysis, 34(1-4), 109-120. doi:10.1007/s11244-005-3804-6 | es_ES |
dc.description.references | González-Arellano, C., Corma, A., Iglesias, M., & Sánchez, F. (2004). Improved Palladium and Nickel Catalysts Heterogenised on Oxidic Supports (Silica, MCM-41, ITQ-2, ITQ-6). Advanced Synthesis & Catalysis, 346(11), 1316-1328. doi:10.1002/adsc.200404029 | es_ES |
dc.description.references | McKittrick, M. W., & Jones, C. W. (2005). Modulating the Reactivity of an Organometallic Catalyst via Immobilization on a Spatially Patterned Silica Surface. Chemistry of Materials, 17(19), 4758-4761. doi:10.1021/cm050925j | es_ES |
dc.description.references | Ayala, V., Corma, A., Iglesias, M., Rincón, J. A., & Sánchez, F. (2004). Hybrid organic—inorganic catalysts: a cooperative effect between support, and palladium and nickel salen complexes on catalytic hydrogenation of imines. Journal of Catalysis, 224(1), 170-177. doi:10.1016/j.jcat.2004.02.017 | es_ES |
dc.description.references | Han, L., Ruan, J., Li, Y., Terasaki, O., & Che, S. (2007). Synthesis and Characterization of the Amphoteric Amino Acid Bifunctional Mesoporous Silica. Chemistry of Materials, 19(11), 2860-2867. doi:10.1021/cm0705845 | es_ES |
dc.description.references | Colilla, M., Izquierdo-Barba, I., Sánchez-Salcedo, S., Fierro, J. L. G., Hueso, J. L., & Vallet-Regí, M. (2010). Synthesis and Characterization of Zwitterionic SBA-15 Nanostructured Materials. Chemistry of Materials, 22(23), 6459-6466. doi:10.1021/cm102827y | es_ES |
dc.description.references | Sharma, K. K., & Asefa, T. (2007). Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials. Angewandte Chemie International Edition, 46(16), 2879-2882. doi:10.1002/anie.200604570 | es_ES |
dc.description.references | Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R., & Rothenberg, G. (2011). Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angewandte Chemie International Edition, 50(41), 9615-9619. doi:10.1002/anie.201101449 | es_ES |
dc.description.references | Villaverde, G., Corma, A., Iglesias, M., & Sánchez, F. (2012). Heterogenized Gold Complexes: Recoverable Catalysts for Multicomponent Reactions of Aldehydes, Terminal Alkynes, and Amines. ACS Catalysis, 2(3), 399-406. doi:10.1021/cs200601w | es_ES |
dc.description.references | Villaverde, G., Arnanz, A., Iglesias, M., Monge, A., Sánchez, F., & Snejko, N. (2011). Development of homogeneous and heterogenized rhodium(i) and palladium(ii) complexes with ligands based on a chiral proton sponge building block and their application as catalysts. Dalton Transactions, 40(37), 9589. doi:10.1039/c1dt10597c | es_ES |
dc.description.references | Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., & Terasaki, O. (1999). Novel Mesoporous Materials with a Uniform Distribution of Organic Groups and Inorganic Oxide in Their Frameworks. Journal of the American Chemical Society, 121(41), 9611-9614. doi:10.1021/ja9916658 | es_ES |
dc.description.references | Asefa, T., MacLachlan, M. J., Coombs, N., & Ozin, G. A. (1999). Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature, 402(6764), 867-871. doi:10.1038/47229 | es_ES |
dc.description.references | Melde, B. J., Holland, B. T., Blanford, C. F., & Stein, A. (1999). Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials, 11(11), 3302-3308. doi:10.1021/cm9903935 | es_ES |
dc.description.references | Hoffmann, F., Cornelius, M., Morell, J., & Fröba, M. (2006). Periodic Mesoporous Organosilicas (PMOs): Past, Present, and Future. Journal of Nanoscience and Nanotechnology, 6(2), 265-288. doi:10.1166/jnn.2006.902 | es_ES |
dc.description.references | Inagaki, S., Guan, S., Ohsuna, T., & Terasaki, O. (2002). An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature, 416(6878), 304-307. doi:10.1038/416304a | es_ES |
dc.description.references | Baleizão, C., Gigante, B., Das, D., Alvaro, M., Garcia, H., & Corma, A. (2003). Synthesis and catalytic activity of a chiral periodic mesoporous organosilica (ChiMO). Chem. Commun., (15), 1860-1861. doi:10.1039/b304814d | es_ES |
dc.description.references | Baleizão, C. (2004). Periodic mesoporous organosilica incorporating a catalytically active vanadyl Schiff base complex in the framework. Journal of Catalysis, 223(1), 106-113. doi:10.1016/j.jcat.2004.01.016 | es_ES |
dc.description.references | Burleigh, M. C., Markowitz, M. A., Spector, M. S., & Gaber, B. P. (2001). Direct Synthesis of Periodic Mesoporous Organosilicas: Functional Incorporation by Co-condensation with Organosilanes. The Journal of Physical Chemistry B, 105(41), 9935-9942. doi:10.1021/jp011814k | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 | es_ES |
dc.description.references | Asefa, T., Kruk, M., MacLachlan, M. J., Coombs, N., Grondey, H., Jaroniec, M., & Ozin, G. A. (2001). Novel Bifunctional Periodic Mesoporous Organosilicas, BPMOs: Synthesis, Characterization, Properties and in-Situ Selective Hydroboration−Alcoholysis Reactions of Functional Groups. Journal of the American Chemical Society, 123(35), 8520-8530. doi:10.1021/ja0037320 | es_ES |
dc.description.references | Olkhovyk, O., Pikus, S., & Jaroniec, M. (2005). Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups and mercaptopropyl ligands. Journal of Materials Chemistry, 15(15), 1517. doi:10.1039/b500058k | es_ES |
dc.description.references | Grudzien, R. M., Grabicka, B. E., Pikus, S., & Jaroniec, M. (2006). Periodic Mesoporous Organosilicas with Ethane and Large Isocyanurate Bridging Groups. Chemistry of Materials, 18(7), 1722-1725. doi:10.1021/cm052717x | es_ES |
dc.description.references | Grudzien, R. M., Blitz, J. P., Pikus, S., & Jaroniec, M. (2009). Cage-like ordered mesoporous organosilicas with isocyanurate bridging groups: Synthesis, template removal and structural properties. Microporous and Mesoporous Materials, 118(1-3), 68-77. doi:10.1016/j.micromeso.2008.08.017 | es_ES |
dc.description.references | Cho, E.-B., Kim, D., & Jaroniec, M. (2009). Bifunctional Periodic Mesoporous Organosilicas with Thiophene and Isocyanurate Bridging Groups. Langmuir, 25(22), 13258-13263. doi:10.1021/la902089c | es_ES |
dc.description.references | Zhang, W.-H., Zhang, X., Hua, Z., Harish, P., Schroeder, F., Hermes, S., … Fischer, R. A. (2007). Synthesis, Bifunctionalization, and Application of Isocyanurate-Based Periodic Mesoporous Organosilicas. Chemistry of Materials, 19(10), 2663-2670. doi:10.1021/cm061922p | es_ES |
dc.description.references | Olkhovyk, O., & Jaroniec, M. (2007). Polymer-Templated Mesoporous Organosilicas with Two Types of Multifunctional Organic Groups. Industrial & Engineering Chemistry Research, 46(6), 1745-1751. doi:10.1021/ie061244g | es_ES |
dc.description.references | Morell, J., Güngerich, M., Wolter, G., Jiao, J., Hunger, M., Klar, P. J., & Fröba, M. (2006). Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes. J. Mater. Chem., 16(27), 2809-2818. doi:10.1039/b603458f | es_ES |
dc.description.references | Cho, E.-B., & Kim, D. (2008). Multifunctional periodic mesoporous organosilicas prepared with block copolymer: Composition effect on morphology. Microporous and Mesoporous Materials, 113(1-3), 530-537. doi:10.1016/j.micromeso.2007.12.010 | es_ES |
dc.description.references | Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2006). Mesoporous Materials with an Acidic Framework and Basic Pores. A Successful Cohabitation. Journal of the American Chemical Society, 128(27), 8718-8719. doi:10.1021/ja0622960 | es_ES |
dc.description.references | Kuschel, A., Drescher, M., Kuschel, T., & Polarz, S. (2010). Bifunctional Mesoporous Organosilica Materials and Their Application in Catalysis: Cooperative Effects or Not? Chemistry of Materials, 22(4), 1472-1482. doi:10.1021/cm903412e | es_ES |
dc.description.references | Shylesh, S., Wagener, A., Seifert, A., Ernst, S., & Thiel, W. R. (2009). Mesoporous Organosilicas with Acidic Frameworks and Basic Sites in the Pores: An Approach to Cooperative Catalytic Reactions. Angewandte Chemie International Edition, 49(1), 184-187. doi:10.1002/anie.200903985 | es_ES |
dc.description.references | Mouawia, R., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2008). Bifunctional ordered mesoporous materials: direct synthesis and study of the distribution of two distinct functional groups in the pore channels. Journal of Materials Chemistry, 18(35), 4193. doi:10.1039/b807793b | es_ES |
dc.description.references | Alauzun, J., Mehdi, A., Reyé, C., & Corriu, R. J. P. (2007). Direct synthesis of bifunctional mesoporous organosilicas containing chelating groups in the framework and reactive functional groups in the channel pores. J. Mater. Chem., 17(4), 349-356. doi:10.1039/b613804g | es_ES |
dc.description.references | Yang, H., Li, G., Ma, Z., Chao, J., & Guo, Z. (2010). Three-dimensional cubic mesoporous materials with a built-in N-heterocyclic carbene for Suzuki–Miyaura coupling of aryl chlorides and C(sp3)-chlorides. Journal of Catalysis, 276(1), 123-133. doi:10.1016/j.jcat.2010.09.004 | es_ES |
dc.description.references | Zhao, H., Yu, N., Wang, J., Zhuang, D., Ding, Y., Tan, R., & Yin, D. (2009). Preparation and catalytic activity of periodic mesoporous organosilica incorporating Lewis acidic chloroindate(III) ionic liquid moieties. Microporous and Mesoporous Materials, 122(1-3), 240-246. doi:10.1016/j.micromeso.2009.03.006 | es_ES |
dc.description.references | Nguyen, T. P., Hesemann, P., Gaveau, P., & Moreau, J. J. E. (2009). Periodic mesoporous organosilica containing ionic bis-aryl-imidazolium entities: Heterogeneous precursors for silica-hybrid-supported NHC complexes. Journal of Materials Chemistry, 19(24), 4164. doi:10.1039/b900431a | es_ES |
dc.description.references | Trilla, M., Pleixats, R., Man, M. W. C., & Bied, C. (2009). Organic–inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts as recyclable organocatalysts for Knoevenagel condensations. Green Chemistry, 11(11), 1815. doi:10.1039/b916767f | es_ES |
dc.description.references | Boronat, M., Climent, M. J., Corma, A., Iborra, S., Montón, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519 | es_ES |
dc.description.references | Corma, A., Boronat, M., Climent, M. J., Iborra, S., Montón, R., & Sabater, M. J. (2011). A recyclable bifunctional acid–base organocatalyst with ionic liquid character. The role of site separation and spatial configuration on different condensation reactions. Physical Chemistry Chemical Physics, 13(38), 17255. doi:10.1039/c1cp21986c | es_ES |
dc.description.references | Shin, J. Y., Lee, B. S., Jung, Y., Kim, S. J., & Lee, S. (2007). Palladium nanoparticles captured onto spherical silica particles using a urea cross-linked imidazolium molecular band. Chemical Communications, (48), 5238. doi:10.1039/b711237h | es_ES |
dc.description.references | Liu, J., Yang, H. Q., Kleitz, F., Chen, Z. G., Yang, T., Strounina, E., … Qiao, S. Z. (2011). Yolk-Shell Hybrid Materials with a Periodic Mesoporous Organosilica Shell: Ideal Nanoreactors for Selective Alcohol Oxidation. Advanced Functional Materials, 22(3), 591-599. doi:10.1002/adfm.201101900 | es_ES |
dc.description.references | Karimi, B., & Kabiri Esfahani, F. (2011). Unexpected golden Ullmann reaction catalyzed by Au nanoparticles supported on periodic mesoporous organosilica (PMO). Chemical Communications, 47(37), 10452. doi:10.1039/c1cc12566d | es_ES |
dc.description.references | Zhu, F.-X., Wang, W., & Li, H.-X. (2011). Water-Medium and Solvent-Free Organic Reactions over a Bifunctional Catalyst with Au Nanoparticles Covalently Bonded to HS/SO3H Functionalized Periodic Mesoporous Organosilica. Journal of the American Chemical Society, 133(30), 11632-11640. doi:10.1021/ja203450g | es_ES |
dc.description.references | Ruiz-Hitzky, E., Darder, M., & Aranda, P. (2005). Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 15(35-36), 3650. doi:10.1039/b505640n | es_ES |
dc.description.references | Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774 | es_ES |
dc.description.references | Corma, A., Martı́nez, A., & Martı́nez-Soria, V. (2001). Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes. Journal of Catalysis, 200(2), 259-269. doi:10.1006/jcat.2001.3219 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Velty, A. (2004). Synthesis of hyacinth, vanilla, and blossom orange fragrances: the benefit of using zeolites and delaminated zeolites as catalysts. Applied Catalysis A: General, 263(2), 155-161. doi:10.1016/j.apcata.2003.12.007 | es_ES |
dc.description.references | Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z | es_ES |
dc.description.references | Motokura, K., Tada, M., & Iwasawa, Y. (2009). Layered Materials with Coexisting Acidic and Basic Sites for Catalytic One-Pot Reaction Sequences. Journal of the American Chemical Society, 131(23), 7944-7945. doi:10.1021/ja9012003 | es_ES |
dc.description.references | Zhong, C., & Shi, X. (2010). When Organocatalysis Meets Transition-Metal Catalysis. European Journal of Organic Chemistry, 2010(16), 2999-3025. doi:10.1002/ejoc.201000004 | es_ES |
dc.description.references | Motokura, K., Fujita, N., Mori, K., Mizugaki, T., Ebitani, K., & Kaneda, K. (2005). An Acidic Layered Clay Is Combined with A Basic Layered Clay for One-Pot Sequential Reactions. Journal of the American Chemical Society, 127(27), 9674-9675. doi:10.1021/ja052386p | es_ES |
dc.description.references | Phan, N. T. S., Gill, C. S., Nguyen, J. V., Zhang, Z. J., & Jones, C. W. (2006). Expanding the Utility of One-Pot Multistep Reaction Networks through Compartmentation and Recovery of the Catalyst. Angewandte Chemie International Edition, 45(14), 2209-2212. doi:10.1002/anie.200503445 | es_ES |
dc.description.references | Huang, Y., Trewyn, B. G., Chen, H.-T., & Lin, V. S.-Y. (2008). One-pot reaction cascades catalyzed by base- and acid-functionalized mesoporous silica nanoparticles. New Journal of Chemistry, 32(8), 1311. doi:10.1039/b806664g | es_ES |
dc.description.references | Takagaki, A., Ohara, M., Nishimura, S., & Ebitani, K. (2009). A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chemical Communications, (41), 6276. doi:10.1039/b914087e | es_ES |
dc.description.references | Gelman, F., Blum, J., & Avnir, D. (2001). Acids and Bases in One Pot while Avoiding Their Mutual Destruction We gratefully acknowledge support from the Israel Science Foundation (grant 96-98-2) and from the Infrastructure (Tashtiot) Project of the Israel Ministry for Science, Arts and Sports; and from the German–Israeli Foundation for Scientific Research and Development (Grant No. I-530.045.05/97). Angewandte Chemie International Edition, 40(19), 3647. doi:10.1002/1521-3773(20011001)40:19<3647::aid-anie3647>3.0.co;2-a | es_ES |
dc.description.references | Chandrasekhar, S., Mallikarjun, K., Pavankumarreddy, G., Rao, K. V., & Jagadeesh, B. (2009). Enantiopure cycloalkane fused tetrahydropyrans through domino Michael–ketalizations with organocatalysis. Chemical Communications, (33), 4985. doi:10.1039/b904662c | es_ES |
dc.description.references | Grondal, C., Jeanty, M., & Enders, D. (2010). Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chemistry, 2(3), 167-178. doi:10.1038/nchem.539 | es_ES |