Mostrar el registro sencillo del ítem
dc.contributor.author | Espinosa García, Jaime | es_ES |
dc.contributor.author | Andrés Martínez, David de | es_ES |
dc.contributor.author | Ruiz, Juan Carlos | es_ES |
dc.contributor.author | Gil, Pedro | es_ES |
dc.date.accessioned | 2016-10-03T13:03:03Z | |
dc.date.available | 2016-10-03T13:03:03Z | |
dc.date.issued | 2013 | |
dc.identifier.isbn | 978-3-642-38788-3 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/70959 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38789-0_7 | es_ES |
dc.description.abstract | Current integration scales are increasing the number and types of faults that embedded systems must face. Traditional approaches focus on dealing with those transient and permanent faults that impact the state or output of systems, whereas little research has targeted those faults being logically, electrically or temporally masked -which we have named fugacious. A fast detection and precise diagnosis of faults occurrence, even if the provided service is unaffected, could be of invaluable help to determine, for instance, that systems are currently under the influence of environmental disturbances like radiation, suffering from wear-out, or being affected by an intermittent fault. Upon detection, systems may react to adapt the deployed fault tolerance mechanisms to the diagnosed problem. This paper explores these ideas evaluating challenges and requirements involved, and provides an outline of potential techniques to be applied. | es_ES |
dc.description.sponsorship | This work has been funded by Spanish Ministry of Economy ARENES project (TIN2012-38308-C02-01) | |
dc.format.extent | 12 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Dependable Computing | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;7869 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fault detection | es_ES |
dc.subject | Transient faults | es_ES |
dc.subject | Intermittent faults | es_ES |
dc.subject | Permanent faults | es_ES |
dc.subject | Fault diagnosis | es_ES |
dc.subject | VLSI design workflow | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | The Challenge of Detection and Diagnosis of Fugacious Hardware Faults in VLSI Designs | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-642-38789-0_7 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2012-38308-C02-01/ES/ADAPTIVE AND RESILIENT NETWORKED EMBEDDED SYSTEMS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Espinosa García, J.; Andrés Martínez, DD.; Ruiz, JC.; Gil, P. (2013). The Challenge of Detection and Diagnosis of Fugacious Hardware Faults in VLSI Designs. En Dependable Computing. Springer. 76-87. https://doi.org/10.1007/978-3-642-38789-0_7 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | 14th European Workshop on Dependable Computing (EWDC 2013) | es_ES |
dc.relation.conferencedate | May 15-16, 2013 | es_ES |
dc.relation.conferenceplace | Coimbra, Portugal | es_ES |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-3-642-38789-0_7 | es_ES |
dc.description.upvformatpinicio | 76 | es_ES |
dc.description.upvformatpfin | 87 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 245720 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Narayanan, V., Xie, Y.: Reliability concerns in embedded systems design. IEEE Computer 1(39), 118–120 (2006) | es_ES |
dc.description.references | Hannius, O., Karlsson, J.: Impact of soft errors in a jet engine controller. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 223–234. Springer, Heidelberg (2012) | es_ES |
dc.description.references | Borkar, S.: Designing reliable systems from unreliable components: the challenges of transistor variability and degradation. IEEE Micro 25(6), 10–16 (2005) | es_ES |
dc.description.references | JEDEC: Measurement and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semiconductor devices. JEDEC Standard JESD89A. JEDEC (2006) | es_ES |
dc.description.references | Gracia-Moran, J., Gil-Tomas, D., Saiz-Adalid, L.J., Baraza, J.C., Gil-Vicente, P.J.: Experimental validation of a fault tolerant microcomputer system against intermittent faults. In: DSN, pp. 413–418 (2010) | es_ES |
dc.description.references | Constantinescu, C.: Intermittent faults and effects on reliability of integrated circuits. In: Proceedings of the 2008 Annual Reliability and Maintainability Symposium, pp. 370–374. IEEE Computer Society, Washington, DC (2008) | es_ES |
dc.description.references | Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1, 11–33 (2004) | es_ES |
dc.description.references | Johnson, C., Holloway, C.: The dangers of failure masking in fault-tolerant software: Aspects of a recent in-flight upset event. In: 2007 2nd Institution of Engineering and Technology International Conference on System Safety, pp. 60–65 (October 2007) | es_ES |
dc.description.references | Bolchini, C., Salice, F., Sciuto, D.: Fault analysis for networks with concurrent error detection. IEEE Des. Test 15(4), 66–74 (1998) | es_ES |
dc.description.references | Goessel, M., Ocheretny, V., Sogomonyan, E., Marienfeld, D.: New Methods of Concurrent Checking (Frontiers in Electronic Testing), 1st edn. Springer Publishing Company, Incorporated (2008) | es_ES |
dc.description.references | Iyer, R.K., Rossetti, D.J.: A statistical load dependency model for cpu errors at slac. In: Twenty-Fifth International Symposium on Fault-Tolerant Computing, ‘Highlights from Twenty-Five Years’, p. 373 (June 1995) | es_ES |
dc.description.references | Dodd, P.E., Shaneyfelt, M.R., Felix, J.A., Schwank, J.R.: Production and propagation of single-event transients in high-speed digital logic ics. IEEE Transactions on Nuclear Science 51, 3278–3284 (2004) | es_ES |
dc.description.references | Nightingale, E.B., Douceur, J.R., Orgovan, V.: Cycles, cells and platters: an empirical analysisof hardware failures on a million consumer pcs. In: Proceedings of the Sixth Conference on Computer Systems, EuroSys 2011, pp. 343–356. ACM, New York (2011) | es_ES |
dc.description.references | Kimseng, K., Hoit, M., Tiwari, N., Pecht, M.: Physics-of-failure assessment of a cruise control module. Microelectronics Reliability 39(10), 1423–1444 (1999) | es_ES |
dc.description.references | Savir, J.: Detection of single intermittent faults in sequential circuits. IEEE Trans. Comput. 29(7), 673–678 (1980) | es_ES |
dc.description.references | Correcher, A., Garcia, E., Morant, F., Quiles, E., Rodriguez, L.: Intermittent failure dynamics characterization. IEEE Transactions on Reliability 61(3), 649–658 (2012) | es_ES |
dc.description.references | Sorensen, B., Kelly, G., Sajecki, A., Sorensen, P.: An analyzer for detecting intermittent faults in electronic devices. In: AUTOTESTCON 1994. IEEE Systems Readiness Technology Conference. ‘Cost Effective Support Into the Next Century’, Conference Proceedings, pp. 417–421 (September 1994) | es_ES |
dc.description.references | Sosnowski, J.: Transient fault tolerance in digital systems. IEEE Micro 14(1), 24–35 (1994) | es_ES |
dc.description.references | Bondavalli, A., Chiaradonna, S., Di Giandomenico, F., Grandoni, F.: Threshold-based mechanisms to discriminate transient from intermittent faults. IEEE Trans. Comput. 49(3), 230–245 (2000) | es_ES |
dc.description.references | Rashid, L., Pattabiraman, K., Gopalakrishnan, S.: Intermittent hardware errors and recovery: modelling and evaluation. In: International Conference on Quantitative Evaluation of Systems, QEST (2012) | es_ES |
dc.description.references | Touba, N.A., McCluskey, E.J.: Logic synthesis of multilevel circuits with concurrent error detection. IEEE Trans. CAD 16(7), 783–789 (1997) | es_ES |
dc.description.references | Nicolaidis, M., Manich, S., Figueras, J.: Achieving fault secureness in parity prediction arithmetic operators: General conditions and implementations. In: Proceedings of the 1996 European conference on Design and Test, EDTC 1996, pp. 186–193. IEEE Computer Society, Washington, DC (1996) | es_ES |
dc.description.references | Ko, S.B., Lo, J.C.: Efficient realization of parity prediction functions in fpgas. J. Electron. Test. 20(5), 489–499 (2004) | es_ES |
dc.description.references | D’Angelo, S., Sechi, G.R., Metra, C.: Transient and permanent fault diagnosis for fpga-based tmr systems. In: Proceedings of the 14th International Symposium on Defect and Fault-Tolerance in VLSI Systems, DFT 1999, pp. 330–338. IEEE Computer Society, Washington, DC (1999) | es_ES |
dc.description.references | Kim, C.: Detection and location of intermittent faults by monitoring carrier signal channel behavior of electrical interconnection system. In: Electric Ship Technologies Symposium, ESTS 2009, pp. 449–455. IEEE (April 2009) | es_ES |