- -

Static cleaning tests as the first step to optimize RO membranes cleaning procedure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Static cleaning tests as the first step to optimize RO membranes cleaning procedure

Mostrar el registro completo del ítem

García Fayos, B.; Arnal Arnal, JM.; Gimenez Anton, AC.; Alvarez Blanco, S.; Sancho Fernández, MP. (2015). Static cleaning tests as the first step to optimize RO membranes cleaning procedure. Desalination and Water Treatment. 55(12):3380-3390. doi:10.1080/19443994.2014.957924

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71087

Ficheros en el ítem

Metadatos del ítem

Título: Static cleaning tests as the first step to optimize RO membranes cleaning procedure
Autor: García Fayos, Beatriz Arnal Arnal, José Miguel Gimenez Anton, Adria Carles Alvarez Blanco, Silvia Sancho Fernández, María Pino
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Fecha difusión:
Resumen:
Membrane fouling is an intrinsic problem of membrane technology which affects process performance and causes a substantial rise of the operating costs. This becomes central in seawater desalination processes. This study ...[+]
Palabras clave: Chemical cleaning , Desalination , Static tests , Fouling , Reverse osmosis
Derechos de uso: Cerrado
Fuente:
Desalination and Water Treatment. (issn: 1944-3986 )
DOI: 10.1080/19443994.2014.957924
Editorial:
Taylor & Francis
Versión del editor: http://dx.doi.org/10.1080/19443994.2014.957924
Código del Proyecto:
info:eu-repo/grantAgreement/CDTI/CENIT/CEN-20091028/ES/Desarrollo de tecnologías sostenibles para el ciclo del agua/TECOAGUA
Agradecimientos:
The authors wish to thank Abengoa Water, S.L. for the financial support given to this research, through the project "Cleaning and re-use of reverse osmosis membranes in desalination plants," which belongs to the CENIT-Tecoagua ...[+]
Tipo: Artículo

References

H.F. Ridgway, Biological Fouling of Separation Membranes used in Water Treatment Applications, AWWA Research Foundation, Denver, CO, 2003.

Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051

Wang, X., Wu, Z., Wang, Z., Du, X., & Hua, J. (2008). Membrane fouling mechanisms in the process of using flat-sheet membrane for simultaneous thickening and digestion of activated sludge. Separation and Purification Technology, 63(3), 676-683. doi:10.1016/j.seppur.2008.07.013 [+]
H.F. Ridgway, Biological Fouling of Separation Membranes used in Water Treatment Applications, AWWA Research Foundation, Denver, CO, 2003.

Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051

Wang, X., Wu, Z., Wang, Z., Du, X., & Hua, J. (2008). Membrane fouling mechanisms in the process of using flat-sheet membrane for simultaneous thickening and digestion of activated sludge. Separation and Purification Technology, 63(3), 676-683. doi:10.1016/j.seppur.2008.07.013

Contreras, A. E., Kim, A., & Li, Q. (2009). Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter. Journal of Membrane Science, 327(1-2), 87-95. doi:10.1016/j.memsci.2008.11.030

Chang, E.-E., Yang, S.-Y., Huang, C.-P., Liang, C.-H., & Chiang, P.-C. (2011). Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model. Separation and Purification Technology, 79(3), 329-336. doi:10.1016/j.seppur.2011.03.017

Maximous, N., Nakhla, G., & Wan, W. (2009). Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. Journal of Membrane Science, 339(1-2), 93-99. doi:10.1016/j.memsci.2009.04.034

Pontié, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J., & Suty, H. (2005). Tools for membrane autopsies and antifouling strategies in seawater feeds: a review. Desalination, 181(1-3), 75-90. doi:10.1016/j.desal.2005.01.013

Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. doi:10.1016/j.memsci.2007.06.002

Butt, F. H., Rahman, F., & Baduruthamal, U. (1995). Identification of scale deposits through membrane autopsy. Desalination, 101(3), 219-230. doi:10.1016/0011-9164(95)00025-w

Butt, F. H., Rahman, F., & Baduruthamal, U. (1997). Characterization of foulants by autopsy of RO desalination membranes. Desalination, 114(1), 51-64. doi:10.1016/s0011-9164(97)00154-9

Dudley, L. ., & Darton, E. . (1996). Membrane autopsy — a case study. Desalination, 105(1-2), 135-141. doi:10.1016/0011-9164(96)00067-7

Luo, M., & Wang, Z. (2001). Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination, 141(1), 15-22. doi:10.1016/s0011-9164(01)00385-x

Gwon, E., Yu, M., Oh, H., & Ylee, Y. (2003). Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Water Research, 37(12), 2989-2997. doi:10.1016/s0043-1354(02)00563-8

SCHNEIDER, R., FERREIRA, L., BINDER, P., & RAMOS, J. (2005). Analysis of foulant layer in all elements of an RO train. Journal of Membrane Science, 261(1-2), 152-162. doi:10.1016/j.memsci.2005.03.044

Ebrahim, S. (1994). Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination, 96(1-3), 225-238. doi:10.1016/0011-9164(94)85174-3

Sadhwani, J. J., & Veza, J. M. (2001). Cleaning tests for seawater reverse osmosis membranes. Desalination, 139(1-3), 177-182. doi:10.1016/s0011-9164(01)00308-3

Sohrabi, M. R., Madaeni, S. S., Khosravi, M., & Ghaedi, A. M. (2011). Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination, 267(1), 93-100. doi:10.1016/j.desal.2010.09.011

Bartlett, M., Bird, M. R., & Howell, J. A. (1995). An experimental study for the development of a qualitative membrane cleaning model. Journal of Membrane Science, 105(1-2), 147-157. doi:10.1016/0376-7388(95)00052-e

Liikanen, R., Yli-Kuivila, J., & Laukkanen, R. (2002). Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. Journal of Membrane Science, 195(2), 265-276. doi:10.1016/s0376-7388(01)00569-5

Chen, J. P., Kim, S. ., & Ting, Y. . (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1-2), 27-45. doi:10.1016/s0376-7388(03)00174-1

Strugholtz, S., Sundaramoorthy, K., Panglisch, S., Lerch, A., Brügger, A., & Gimbel, R. (2005). Evaluation of the performance of different chemicals for cleaning capillary membranes. Desalination, 179(1-3), 191-202. doi:10.1016/j.desal.2004.11.067

Lee, H., Amy, G., Cho, J., Yoon, Y., Moon, S.-H., & Kim, I. S. (2001). Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Research, 35(14), 3301-3308. doi:10.1016/s0043-1354(01)00063-x

Lee, S., & Elimelech, M. (2007). Salt cleaning of organic-fouled reverse osmosis membranes. Water Research, 41(5), 1134-1142. doi:10.1016/j.watres.2006.11.043

Ang, W. S., Lee, S., & Elimelech, M. (2006). Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science, 272(1-2), 198-210. doi:10.1016/j.memsci.2005.07.035

Chesters, S. P. (2009). Innovations in the inhibition and cleaning of reverse osmosis membrane scaling and fouling. Desalination, 238(1-3), 22-29. doi:10.1016/j.desal.2008.01.031

Siavash Madaeni, S., Mohamamdi, T., & Kazemi Moghadam, M. (2001). Chemical cleaning of reverse osmosis membranes. Desalination, 134(1-3), 77-82. doi:10.1016/s0011-9164(01)00117-5

Arnal, J. M., Garcia-Fayos, B., Lora, J., Verdú, G., & Sancho, M. (2008). AQUAPOT: study of several cleaning solutions to recover permeate flow in a humanitarian drinking water treatment facility based on spiral wound UF membrane. Preliminary test (I). Desalination, 221(1-3), 331-337. doi:10.1016/j.desal.2007.01.091

Arnal, J. M., Garcia-Fayos, B., Sancho, M., & Verdu, G. (2009). Ultrafiltration membrane cleaning with different chemical solutions after treating surface water. Desalination and Water Treatment, 7(1-3), 198-205. doi:10.5004/dwt.2009.709

Karime, M., Bouguecha, S., & Hamrouni, B. (2008). RO membrane autopsy of Zarzis brackish water desalination plant. Desalination, 220(1-3), 258-266. doi:10.1016/j.desal.2007.02.040

Yang, H. L., Huang, C., & Pan, J. R. (2008). Characteristics of RO foulants in a brackish water desalination plant. Desalination, 220(1-3), 353-358. doi:10.1016/j.desal.2007.01.040

Lee, J., Jung, J.-Y., Kim, S., Chang, I. S., Mitra, S. S., & Kim, I. S. (2009). Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling. Desalination, 247(1-3), 125-136. doi:10.1016/j.desal.2008.12.018

Simon, A., Price, W. E., & Nghiem, L. D. (2013). Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles. Separation and Purification Technology, 113, 42-50. doi:10.1016/j.seppur.2013.04.011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem