- -

Static cleaning tests as the first step to optimize RO membranes cleaning procedure

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Static cleaning tests as the first step to optimize RO membranes cleaning procedure

Show simple item record

Files in this item

dc.contributor.author García Fayos, Beatriz es_ES
dc.contributor.author Arnal Arnal, José Miguel es_ES
dc.contributor.author Gimenez Anton, Adria Carles es_ES
dc.contributor.author Alvarez Blanco, Silvia es_ES
dc.contributor.author Sancho Fernández, María Pino es_ES
dc.date.accessioned 2016-10-04T08:45:39Z
dc.date.available 2016-10-04T08:45:39Z
dc.date.issued 2015-09-18
dc.identifier.issn 1944-3986
dc.identifier.uri http://hdl.handle.net/10251/71087
dc.description.abstract Membrane fouling is an intrinsic problem of membrane technology which affects process performance and causes a substantial rise of the operating costs. This becomes central in seawater desalination processes. This study is focused on applying a membrane chemical cleaning protocol to obtain the most adequate cleaning conditions to recover the permselective properties of an irreversibly fouled reverse osmosis membrane from a seawater desalination plant. The research was carried out in three steps: fouling characterization by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy and elemental analysis; static cleaning tests; and characterization of the membrane surface after the cleaning step. The cleaning process was performed in a static way as a preliminary step. Five of the most widely used cleaning agents were tested (NaOH, citric acid, HCl, sodium dodecyl sulfate [SDS], and ethylenediaminetetraacetic acid disodium salt) at a broad range of concentrations and two different temperatures (25 and 40 degrees C). SEM-EDX analysis showed that foulant compounds were mainly silica, iron silicate, and aluminum silicate, which indicated that fouling was mainly colloidal and inorganic. The best cleaning results were achieved by SDS 0.5% w/w at 40 degrees C, as the greatest recovery of the membrane permselective properties (permeability and salt rejection index) was obtained. es_ES
dc.description.sponsorship The authors wish to thank Abengoa Water, S.L. for the financial support given to this research, through the project "Cleaning and re-use of reverse osmosis membranes in desalination plants," which belongs to the CENIT-Tecoagua research project, funded as well by the Spanish Ministry of Science and Innovation. The authors would like to gratefully acknowledge Vicente Fornes and Rosa Torrero from the CSIC-I.T.Q research center from the Universitat Politecnica de Valencia for the support given in the ATR-FTIR analysis. en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation Abengoa Water, S.L. es_ES
dc.relation Spanish Ministry of Science and Innovation es_ES
dc.relation.ispartof Desalination and Water Treatment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chemical cleaning es_ES
dc.subject Desalination es_ES
dc.subject Static tests es_ES
dc.subject Fouling es_ES
dc.subject Reverse osmosis es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Static cleaning tests as the first step to optimize RO membranes cleaning procedure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19443994.2014.957924
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.description.bibliographicCitation García Fayos, B.; Arnal Arnal, JM.; Gimenez Anton, AC.; Alvarez Blanco, S.; Sancho Fernández, MP. (2015). Static cleaning tests as the first step to optimize RO membranes cleaning procedure. Desalination and Water Treatment. 55(12):3380-3390. doi:10.1080/19443994.2014.957924 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/19443994.2014.957924 es_ES
dc.description.upvformatpinicio 3380 es_ES
dc.description.upvformatpfin 3390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 286183 es_ES
dc.relation.references H.F. Ridgway, Biological Fouling of Separation Membranes used in Water Treatment Applications, AWWA Research Foundation, Denver, CO, 2003. es_ES
dc.relation.references Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051 es_ES
dc.relation.references Wang, X., Wu, Z., Wang, Z., Du, X., & Hua, J. (2008). Membrane fouling mechanisms in the process of using flat-sheet membrane for simultaneous thickening and digestion of activated sludge. Separation and Purification Technology, 63(3), 676-683. doi:10.1016/j.seppur.2008.07.013 es_ES
dc.relation.references Contreras, A. E., Kim, A., & Li, Q. (2009). Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter. Journal of Membrane Science, 327(1-2), 87-95. doi:10.1016/j.memsci.2008.11.030 es_ES
dc.relation.references Chang, E.-E., Yang, S.-Y., Huang, C.-P., Liang, C.-H., & Chiang, P.-C. (2011). Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model. Separation and Purification Technology, 79(3), 329-336. doi:10.1016/j.seppur.2011.03.017 es_ES
dc.relation.references Maximous, N., Nakhla, G., & Wan, W. (2009). Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. Journal of Membrane Science, 339(1-2), 93-99. doi:10.1016/j.memsci.2009.04.034 es_ES
dc.relation.references Pontié, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J., & Suty, H. (2005). Tools for membrane autopsies and antifouling strategies in seawater feeds: a review. Desalination, 181(1-3), 75-90. doi:10.1016/j.desal.2005.01.013 es_ES
dc.relation.references Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. doi:10.1016/j.memsci.2007.06.002 es_ES
dc.relation.references Butt, F. H., Rahman, F., & Baduruthamal, U. (1995). Identification of scale deposits through membrane autopsy. Desalination, 101(3), 219-230. doi:10.1016/0011-9164(95)00025-w es_ES
dc.relation.references Butt, F. H., Rahman, F., & Baduruthamal, U. (1997). Characterization of foulants by autopsy of RO desalination membranes. Desalination, 114(1), 51-64. doi:10.1016/s0011-9164(97)00154-9 es_ES
dc.relation.references Dudley, L. ., & Darton, E. . (1996). Membrane autopsy — a case study. Desalination, 105(1-2), 135-141. doi:10.1016/0011-9164(96)00067-7 es_ES
dc.relation.references Luo, M., & Wang, Z. (2001). Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination, 141(1), 15-22. doi:10.1016/s0011-9164(01)00385-x es_ES
dc.relation.references Gwon, E., Yu, M., Oh, H., & Ylee, Y. (2003). Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Water Research, 37(12), 2989-2997. doi:10.1016/s0043-1354(02)00563-8 es_ES
dc.relation.references SCHNEIDER, R., FERREIRA, L., BINDER, P., & RAMOS, J. (2005). Analysis of foulant layer in all elements of an RO train. Journal of Membrane Science, 261(1-2), 152-162. doi:10.1016/j.memsci.2005.03.044 es_ES
dc.relation.references Ebrahim, S. (1994). Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination, 96(1-3), 225-238. doi:10.1016/0011-9164(94)85174-3 es_ES
dc.relation.references Sadhwani, J. J., & Veza, J. M. (2001). Cleaning tests for seawater reverse osmosis membranes. Desalination, 139(1-3), 177-182. doi:10.1016/s0011-9164(01)00308-3 es_ES
dc.relation.references Sohrabi, M. R., Madaeni, S. S., Khosravi, M., & Ghaedi, A. M. (2011). Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination, 267(1), 93-100. doi:10.1016/j.desal.2010.09.011 es_ES
dc.relation.references Bartlett, M., Bird, M. R., & Howell, J. A. (1995). An experimental study for the development of a qualitative membrane cleaning model. Journal of Membrane Science, 105(1-2), 147-157. doi:10.1016/0376-7388(95)00052-e es_ES
dc.relation.references Liikanen, R., Yli-Kuivila, J., & Laukkanen, R. (2002). Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. Journal of Membrane Science, 195(2), 265-276. doi:10.1016/s0376-7388(01)00569-5 es_ES
dc.relation.references Chen, J. P., Kim, S. ., & Ting, Y. . (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1-2), 27-45. doi:10.1016/s0376-7388(03)00174-1 es_ES
dc.relation.references Strugholtz, S., Sundaramoorthy, K., Panglisch, S., Lerch, A., Brügger, A., & Gimbel, R. (2005). Evaluation of the performance of different chemicals for cleaning capillary membranes. Desalination, 179(1-3), 191-202. doi:10.1016/j.desal.2004.11.067 es_ES
dc.relation.references Lee, H., Amy, G., Cho, J., Yoon, Y., Moon, S.-H., & Kim, I. S. (2001). Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Research, 35(14), 3301-3308. doi:10.1016/s0043-1354(01)00063-x es_ES
dc.relation.references Lee, S., & Elimelech, M. (2007). Salt cleaning of organic-fouled reverse osmosis membranes. Water Research, 41(5), 1134-1142. doi:10.1016/j.watres.2006.11.043 es_ES
dc.relation.references Ang, W. S., Lee, S., & Elimelech, M. (2006). Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science, 272(1-2), 198-210. doi:10.1016/j.memsci.2005.07.035 es_ES
dc.relation.references Chesters, S. P. (2009). Innovations in the inhibition and cleaning of reverse osmosis membrane scaling and fouling. Desalination, 238(1-3), 22-29. doi:10.1016/j.desal.2008.01.031 es_ES
dc.relation.references Siavash Madaeni, S., Mohamamdi, T., & Kazemi Moghadam, M. (2001). Chemical cleaning of reverse osmosis membranes. Desalination, 134(1-3), 77-82. doi:10.1016/s0011-9164(01)00117-5 es_ES
dc.relation.references Arnal, J. M., Garcia-Fayos, B., Lora, J., Verdú, G., & Sancho, M. (2008). AQUAPOT: study of several cleaning solutions to recover permeate flow in a humanitarian drinking water treatment facility based on spiral wound UF membrane. Preliminary test (I). Desalination, 221(1-3), 331-337. doi:10.1016/j.desal.2007.01.091 es_ES
dc.relation.references Arnal, J. M., Garcia-Fayos, B., Sancho, M., & Verdu, G. (2009). Ultrafiltration membrane cleaning with different chemical solutions after treating surface water. Desalination and Water Treatment, 7(1-3), 198-205. doi:10.5004/dwt.2009.709 es_ES
dc.relation.references Karime, M., Bouguecha, S., & Hamrouni, B. (2008). RO membrane autopsy of Zarzis brackish water desalination plant. Desalination, 220(1-3), 258-266. doi:10.1016/j.desal.2007.02.040 es_ES
dc.relation.references Yang, H. L., Huang, C., & Pan, J. R. (2008). Characteristics of RO foulants in a brackish water desalination plant. Desalination, 220(1-3), 353-358. doi:10.1016/j.desal.2007.01.040 es_ES
dc.relation.references Lee, J., Jung, J.-Y., Kim, S., Chang, I. S., Mitra, S. S., & Kim, I. S. (2009). Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling. Desalination, 247(1-3), 125-136. doi:10.1016/j.desal.2008.12.018 es_ES
dc.relation.references Simon, A., Price, W. E., & Nghiem, L. D. (2013). Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles. Separation and Purification Technology, 113, 42-50. doi:10.1016/j.seppur.2013.04.011 es_ES


This item appears in the following Collection(s)

Show simple item record