Mostrar el registro sencillo del ítem
dc.contributor.author | García Fayos, Beatriz | es_ES |
dc.contributor.author | Arnal Arnal, José Miguel | es_ES |
dc.contributor.author | Gimenez Anton, Adria Carles | es_ES |
dc.contributor.author | Alvarez Blanco, Silvia | es_ES |
dc.contributor.author | Sancho Fernández, María Pino | es_ES |
dc.date.accessioned | 2016-10-04T08:45:39Z | |
dc.date.available | 2016-10-04T08:45:39Z | |
dc.date.issued | 2015-09-18 | |
dc.identifier.issn | 1944-3986 | |
dc.identifier.uri | http://hdl.handle.net/10251/71087 | |
dc.description.abstract | Membrane fouling is an intrinsic problem of membrane technology which affects process performance and causes a substantial rise of the operating costs. This becomes central in seawater desalination processes. This study is focused on applying a membrane chemical cleaning protocol to obtain the most adequate cleaning conditions to recover the permselective properties of an irreversibly fouled reverse osmosis membrane from a seawater desalination plant. The research was carried out in three steps: fouling characterization by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy and elemental analysis; static cleaning tests; and characterization of the membrane surface after the cleaning step. The cleaning process was performed in a static way as a preliminary step. Five of the most widely used cleaning agents were tested (NaOH, citric acid, HCl, sodium dodecyl sulfate [SDS], and ethylenediaminetetraacetic acid disodium salt) at a broad range of concentrations and two different temperatures (25 and 40 degrees C). SEM-EDX analysis showed that foulant compounds were mainly silica, iron silicate, and aluminum silicate, which indicated that fouling was mainly colloidal and inorganic. The best cleaning results were achieved by SDS 0.5% w/w at 40 degrees C, as the greatest recovery of the membrane permselective properties (permeability and salt rejection index) was obtained. | es_ES |
dc.description.sponsorship | The authors wish to thank Abengoa Water, S.L. for the financial support given to this research, through the project "Cleaning and re-use of reverse osmosis membranes in desalination plants," which belongs to the CENIT-Tecoagua research project, funded as well by the Spanish Ministry of Science and Innovation. The authors would like to gratefully acknowledge Vicente Fornes and Rosa Torrero from the CSIC-I.T.Q research center from the Universitat Politecnica de Valencia for the support given in the ATR-FTIR analysis. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Desalination and Water Treatment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Chemical cleaning | es_ES |
dc.subject | Desalination | es_ES |
dc.subject | Static tests | es_ES |
dc.subject | Fouling | es_ES |
dc.subject | Reverse osmosis | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Static cleaning tests as the first step to optimize RO membranes cleaning procedure | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/19443994.2014.957924 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CDTI/CENIT/CEN-20091028/ES/Desarrollo de tecnologías sostenibles para el ciclo del agua/TECOAGUA | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental | es_ES |
dc.description.bibliographicCitation | García Fayos, B.; Arnal Arnal, JM.; Gimenez Anton, AC.; Alvarez Blanco, S.; Sancho Fernández, MP. (2015). Static cleaning tests as the first step to optimize RO membranes cleaning procedure. Desalination and Water Treatment. 55(12):3380-3390. doi:10.1080/19443994.2014.957924 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/19443994.2014.957924 | es_ES |
dc.description.upvformatpinicio | 3380 | es_ES |
dc.description.upvformatpfin | 3390 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 286183 | es_ES |
dc.contributor.funder | Abengoa | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | H.F. Ridgway, Biological Fouling of Separation Membranes used in Water Treatment Applications, AWWA Research Foundation, Denver, CO, 2003. | es_ES |
dc.description.references | Qu, F., Liang, H., Wang, Z., Wang, H., Yu, H., & Li, G. (2012). Ultrafiltration membrane fouling by extracellular organic matters (EOM) of Microcystis aeruginosa in stationary phase: Influences of interfacial characteristics of foulants and fouling mechanisms. Water Research, 46(5), 1490-1500. doi:10.1016/j.watres.2011.11.051 | es_ES |
dc.description.references | Wang, X., Wu, Z., Wang, Z., Du, X., & Hua, J. (2008). Membrane fouling mechanisms in the process of using flat-sheet membrane for simultaneous thickening and digestion of activated sludge. Separation and Purification Technology, 63(3), 676-683. doi:10.1016/j.seppur.2008.07.013 | es_ES |
dc.description.references | Contreras, A. E., Kim, A., & Li, Q. (2009). Combined fouling of nanofiltration membranes: Mechanisms and effect of organic matter. Journal of Membrane Science, 327(1-2), 87-95. doi:10.1016/j.memsci.2008.11.030 | es_ES |
dc.description.references | Chang, E.-E., Yang, S.-Y., Huang, C.-P., Liang, C.-H., & Chiang, P.-C. (2011). Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model. Separation and Purification Technology, 79(3), 329-336. doi:10.1016/j.seppur.2011.03.017 | es_ES |
dc.description.references | Maximous, N., Nakhla, G., & Wan, W. (2009). Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. Journal of Membrane Science, 339(1-2), 93-99. doi:10.1016/j.memsci.2009.04.034 | es_ES |
dc.description.references | Pontié, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J., & Suty, H. (2005). Tools for membrane autopsies and antifouling strategies in seawater feeds: a review. Desalination, 181(1-3), 75-90. doi:10.1016/j.desal.2005.01.013 | es_ES |
dc.description.references | Al-Amoudi, A., & Lovitt, R. W. (2007). Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. Journal of Membrane Science, 303(1-2), 4-28. doi:10.1016/j.memsci.2007.06.002 | es_ES |
dc.description.references | Butt, F. H., Rahman, F., & Baduruthamal, U. (1995). Identification of scale deposits through membrane autopsy. Desalination, 101(3), 219-230. doi:10.1016/0011-9164(95)00025-w | es_ES |
dc.description.references | Butt, F. H., Rahman, F., & Baduruthamal, U. (1997). Characterization of foulants by autopsy of RO desalination membranes. Desalination, 114(1), 51-64. doi:10.1016/s0011-9164(97)00154-9 | es_ES |
dc.description.references | Dudley, L. ., & Darton, E. . (1996). Membrane autopsy — a case study. Desalination, 105(1-2), 135-141. doi:10.1016/0011-9164(96)00067-7 | es_ES |
dc.description.references | Luo, M., & Wang, Z. (2001). Complex fouling and cleaning-in-place of a reverse osmosis desalination system. Desalination, 141(1), 15-22. doi:10.1016/s0011-9164(01)00385-x | es_ES |
dc.description.references | Gwon, E., Yu, M., Oh, H., & Ylee, Y. (2003). Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Water Research, 37(12), 2989-2997. doi:10.1016/s0043-1354(02)00563-8 | es_ES |
dc.description.references | SCHNEIDER, R., FERREIRA, L., BINDER, P., & RAMOS, J. (2005). Analysis of foulant layer in all elements of an RO train. Journal of Membrane Science, 261(1-2), 152-162. doi:10.1016/j.memsci.2005.03.044 | es_ES |
dc.description.references | Ebrahim, S. (1994). Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination, 96(1-3), 225-238. doi:10.1016/0011-9164(94)85174-3 | es_ES |
dc.description.references | Sadhwani, J. J., & Veza, J. M. (2001). Cleaning tests for seawater reverse osmosis membranes. Desalination, 139(1-3), 177-182. doi:10.1016/s0011-9164(01)00308-3 | es_ES |
dc.description.references | Sohrabi, M. R., Madaeni, S. S., Khosravi, M., & Ghaedi, A. M. (2011). Chemical cleaning of reverse osmosis and nanofiltration membranes fouled by licorice aqueous solutions. Desalination, 267(1), 93-100. doi:10.1016/j.desal.2010.09.011 | es_ES |
dc.description.references | Bartlett, M., Bird, M. R., & Howell, J. A. (1995). An experimental study for the development of a qualitative membrane cleaning model. Journal of Membrane Science, 105(1-2), 147-157. doi:10.1016/0376-7388(95)00052-e | es_ES |
dc.description.references | Liikanen, R., Yli-Kuivila, J., & Laukkanen, R. (2002). Efficiency of various chemical cleanings for nanofiltration membrane fouled by conventionally-treated surface water. Journal of Membrane Science, 195(2), 265-276. doi:10.1016/s0376-7388(01)00569-5 | es_ES |
dc.description.references | Chen, J. P., Kim, S. ., & Ting, Y. . (2003). Optimization of membrane physical and chemical cleaning by a statistically designed approach. Journal of Membrane Science, 219(1-2), 27-45. doi:10.1016/s0376-7388(03)00174-1 | es_ES |
dc.description.references | Strugholtz, S., Sundaramoorthy, K., Panglisch, S., Lerch, A., Brügger, A., & Gimbel, R. (2005). Evaluation of the performance of different chemicals for cleaning capillary membranes. Desalination, 179(1-3), 191-202. doi:10.1016/j.desal.2004.11.067 | es_ES |
dc.description.references | Lee, H., Amy, G., Cho, J., Yoon, Y., Moon, S.-H., & Kim, I. S. (2001). Cleaning strategies for flux recovery of an ultrafiltration membrane fouled by natural organic matter. Water Research, 35(14), 3301-3308. doi:10.1016/s0043-1354(01)00063-x | es_ES |
dc.description.references | Lee, S., & Elimelech, M. (2007). Salt cleaning of organic-fouled reverse osmosis membranes. Water Research, 41(5), 1134-1142. doi:10.1016/j.watres.2006.11.043 | es_ES |
dc.description.references | Ang, W. S., Lee, S., & Elimelech, M. (2006). Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science, 272(1-2), 198-210. doi:10.1016/j.memsci.2005.07.035 | es_ES |
dc.description.references | Chesters, S. P. (2009). Innovations in the inhibition and cleaning of reverse osmosis membrane scaling and fouling. Desalination, 238(1-3), 22-29. doi:10.1016/j.desal.2008.01.031 | es_ES |
dc.description.references | Siavash Madaeni, S., Mohamamdi, T., & Kazemi Moghadam, M. (2001). Chemical cleaning of reverse osmosis membranes. Desalination, 134(1-3), 77-82. doi:10.1016/s0011-9164(01)00117-5 | es_ES |
dc.description.references | Arnal, J. M., Garcia-Fayos, B., Lora, J., Verdú, G., & Sancho, M. (2008). AQUAPOT: study of several cleaning solutions to recover permeate flow in a humanitarian drinking water treatment facility based on spiral wound UF membrane. Preliminary test (I). Desalination, 221(1-3), 331-337. doi:10.1016/j.desal.2007.01.091 | es_ES |
dc.description.references | Arnal, J. M., Garcia-Fayos, B., Sancho, M., & Verdu, G. (2009). Ultrafiltration membrane cleaning with different chemical solutions after treating surface water. Desalination and Water Treatment, 7(1-3), 198-205. doi:10.5004/dwt.2009.709 | es_ES |
dc.description.references | Karime, M., Bouguecha, S., & Hamrouni, B. (2008). RO membrane autopsy of Zarzis brackish water desalination plant. Desalination, 220(1-3), 258-266. doi:10.1016/j.desal.2007.02.040 | es_ES |
dc.description.references | Yang, H. L., Huang, C., & Pan, J. R. (2008). Characteristics of RO foulants in a brackish water desalination plant. Desalination, 220(1-3), 353-358. doi:10.1016/j.desal.2007.01.040 | es_ES |
dc.description.references | Lee, J., Jung, J.-Y., Kim, S., Chang, I. S., Mitra, S. S., & Kim, I. S. (2009). Selection of the most problematic biofoulant in fouled RO membrane and the seawater intake to develop biosensors for membrane biofouling. Desalination, 247(1-3), 125-136. doi:10.1016/j.desal.2008.12.018 | es_ES |
dc.description.references | Simon, A., Price, W. E., & Nghiem, L. D. (2013). Changes in surface properties and separation efficiency of a nanofiltration membrane after repeated fouling and chemical cleaning cycles. Separation and Purification Technology, 113, 42-50. doi:10.1016/j.seppur.2013.04.011 | es_ES |