- -

On the smoothness of L p of a positive vector measure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the smoothness of L p of a positive vector measure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Agud Albesa, Lucia es_ES
dc.contributor.author Calabuig Rodriguez, Jose Manuel es_ES
dc.contributor.author Sánchez Pérez, Enrique Alfonso es_ES
dc.date.accessioned 2016-10-04T09:49:18Z
dc.date.available 2016-10-04T09:49:18Z
dc.date.issued 2015-11
dc.identifier.issn 0026-9255
dc.identifier.uri http://hdl.handle.net/10251/71094
dc.description The final publication is available at Springer via http://dx.doi.org/10.1007/s00605-014-0666-7 es_ES
dc.description.abstract We investigate natural sufficient conditions for a space L p(m) of pintegrable functions with respect to a positive vector measure to be smooth. Under some assumptions on the representation of the dual space of such a space, we prove that this is the case for instance if the Banach space where the vector measure takes its values is smooth. We give also some examples and show some applications of our results for determining norm attaining elements for operators between two spaces L p(m1) and Lq (m2) of positive vector measures m1 and m2. es_ES
dc.description.sponsorship Professor Agud and professor Sanchez-Perez authors gratefully acknowledge the support of the Ministerio de Economia y Competitividad (Spain), under project #MTM2012-36740-c02-02. Professor Calabuig gratefully acknowledges the support of the Ministerio de Economia y Competitividad (Spain), under project #MTM2011-23164. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Monatshefte für Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vector measure es_ES
dc.subject Lp spaces es_ES
dc.subject Smoothness es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On the smoothness of L p of a positive vector measure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00605-014-0666-7
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2012-36740-C02-02/ES/Operadores multilineales, espacios de funciones integrables y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-23164/ES/ANALISIS DE FOURIER MULTILINEAL, VECTORIAL Y SUS APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Agud Albesa, L.; Calabuig Rodriguez, JM.; Sánchez Pérez, EA. (2015). On the smoothness of L p of a positive vector measure. Monatshefte für Mathematik. 178(3):329-343. https://doi.org/10.1007/s00605-014-0666-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00605-014-0666-7 es_ES
dc.description.upvformatpinicio 329 es_ES
dc.description.upvformatpfin 343 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 178 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 301609 es_ES
dc.identifier.eissn 1436-5081
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Beauzamy, B.: Introduction to Banach Spaces and Their Geometry. North-Holland, Amsterdam (1982) es_ES
dc.description.references Diestel, J., Uhl, J.J.: Vector measures. In: Mathematical Surveys, vol. 15. AMS, Providence (1977) es_ES
dc.description.references Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez-Pérez, E.A.: Spaces of p-integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006) es_ES
dc.description.references Ferrando, I., Rodríguez, J.: The weak topology on $$L^p$$ L p of a vector measure. Topol. Appl. 155(13), 1439–1444 (2008) es_ES
dc.description.references Godefroy, G.: Boundaries of a convex set and interpolation sets. Math. Ann. 277(2), 173–184 (1987) es_ES
dc.description.references Howard, R., Schep, A.R.: Norms of positive operators on $$L^p$$ L p -spaces. Proc. Am. Math. Soc. 109(1), 135–146 (1990) es_ES
dc.description.references Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1977) es_ES
dc.description.references Meyer-Nieberg, P.: Banach Latticces. Universitext, Springer-Verlag, Berlin (1991) es_ES
dc.description.references Okada, S., Ricker, W.J., Sánchez-Pérez, E.A.: Optimal Domain and Integral Extension of Operators Acting in Function Spaces. Operator Theory: Advances and Applications, vol. 180. Birkhäuser Verlag, Basel (2008) es_ES
dc.description.references Schep, A.: Products and factors of Banach function spaces. Positivity 14(2), 301–319 (2010) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem