- -

Kinetic study of ozone decay in homogeneous phosphate-buffered medium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Kinetic study of ozone decay in homogeneous phosphate-buffered medium

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferre Aracil, Jesús es_ES
dc.contributor.author Cardona, S. C. es_ES
dc.contributor.author Navarro-Laboulais, J. es_ES
dc.date.accessioned 2016-10-04T09:57:51Z
dc.date.available 2016-10-04T09:57:51Z
dc.date.issued 2015-07-04
dc.identifier.issn 0191-9512
dc.identifier.uri http://hdl.handle.net/10251/71098
dc.description.abstract The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4-/HPO42 buffers at constant ionic strength (0.1 M) and between 5 and 35 ºC. A kinetic model for ozone decomposition is proposed considering the existence of two chemical subsystems, one accounting for direct ozone decomposition leading to hydrogen peroxide and the second one accounting for the reaction between the hydrogen peroxide with the ozone to give different radical species. The model explains the apparent reaction order respect of the ozone for the entire pH interval. The decomposition kinetics at pH 4.5, 6.1, and 9.0 is analyzed at different ionic strength and the results suggest that the phosphate ions do not act as a hydroxyl radical scavenger in the ozone decomposition mechanism. es_ES
dc.description.sponsorship J. Ferre-Aracil acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04). en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis: STM, Behavioural Science and Public Health Titles es_ES
dc.relation.ispartof Ozone: Science and Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ozone es_ES
dc.subject Homogeneous Reactor es_ES
dc.subject Ozone Decay es_ES
dc.subject Ozone Decomposition es_ES
dc.subject Phosphate Buffer es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Kinetic study of ozone decay in homogeneous phosphate-buffered medium es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/01919512.2014.998756
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-FPI-2010-04/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Ferre Aracil, J.; Cardona, SC.; Navarro-Laboulais, J. (2015). Kinetic study of ozone decay in homogeneous phosphate-buffered medium. Ozone: Science and Engineering. 37(4):330-342. https://doi.org/10.1080/01919512.2014.998756 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/01919512.2014.998756 es_ES
dc.description.upvformatpinicio 330 es_ES
dc.description.upvformatpfin 342 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 295616 es_ES
dc.identifier.eissn 1547-6545
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Bezbarua, B. K., & Reckhow, D. A. (2004). Modification of the Standard Neutral Ozone Decomposition Model. Ozone: Science & Engineering, 26(4), 345-357. doi:10.1080/01919510490482179 es_ES
dc.description.references Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O−2 Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 14(4), 1041-1100. doi:10.1063/1.555739 es_ES
dc.description.references Biń, A. K., Machniewski, P., Wołyniec, J., & Pieńczakowska, A. (2013). Modeling of Ozone Reaction with Benzaldehyde Incorporating Ozone Decomposition in Aqueous Solutions. Ozone: Science & Engineering, 35(6), 489-500. doi:10.1080/01919512.2013.821595 es_ES
dc.description.references Black, E. D., & Hayon, E. (1970). Pulse radiolysis of phosphate anions H2PO4-, HPO42-, PO43-, and P2O74- in aqueous solutions. The Journal of Physical Chemistry, 74(17), 3199-3203. doi:10.1021/j100711a007 es_ES
dc.description.references Buehler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. The Journal of Physical Chemistry, 88(12), 2560-2564. doi:10.1021/j150656a026 es_ES
dc.description.references Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805 es_ES
dc.description.references Cantó, B., Cardona, S. C., Coll, C., Navarro-Laboulais, J., & Sánchez, E. (2011). Dynamic optimization of a gas-liquid reactor. Journal of Mathematical Chemistry, 50(2), 381-393. doi:10.1007/s10910-011-9941-1 es_ES
dc.description.references Cantó, B., Coll, C., Sánchez, E., Cardona, S. C., & Navarro-Laboulais, J. (2013). On identifiability for chemical systems from measurable variables. Journal of Mathematical Chemistry, 52(4), 1023-1035. doi:10.1007/s10910-013-0149-4 es_ES
dc.description.references Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2010). On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems. The Canadian Journal of Chemical Engineering, 88(4), 491-502. doi:10.1002/cjce.20327 es_ES
dc.description.references Ershov, B. G., & Gordeev, A. V. (2008). A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiation Physics and Chemistry, 77(8), 928-935. doi:10.1016/j.radphyschem.2007.12.005 es_ES
dc.description.references Fábián, I. (2006). Reactive intermediates in aqueous ozone decomposition: A mechanistic approach. Pure and Applied Chemistry, 78(8), 1559-1570. doi:10.1351/pac200678081559 es_ES
dc.description.references Ferre-Aracil, J., Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2013). Unstationary Film Model for the Determination of Absolute Gas-Liquid Kinetic Rate Constants: Ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129. Ozone: Science & Engineering, 35(6), 423-437. doi:10.1080/01919512.2013.815104 es_ES
dc.description.references Ferre-Aracil, J., Cardona, S. C., & Navarro-Laboulais, J. (2014). Determination and Validation of Henry’s Constant for Ozone in Phosphate Buffers Using Different Analytical Methodologies. Ozone: Science & Engineering, 37(2), 106-118. doi:10.1080/01919512.2014.927323 es_ES
dc.description.references Gardoni, D., Vailati, A., & Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone: Science & Engineering, 34(4), 233-242. doi:10.1080/01919512.2012.686354 es_ES
dc.description.references Grasso, D., & Weber, W. J. (1989). Mathematical Interpretation of Aqueous‐phase Ozone Decomposition Rates. Journal of Environmental Engineering, 115(3), 541-559. doi:10.1061/(asce)0733-9372(1989)115:3(541) es_ES
dc.description.references Gurol, M. D., & Singer, P. C. (1982). Kinetics of ozone decomposition: a dynamic approach. Environmental Science & Technology, 16(7), 377-383. doi:10.1021/es00101a003 es_ES
dc.description.references Kosaka, K., Yamada, H., Matsui, S., Echigo, S., & Shishida, K. (1998). Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes:  Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environmental Science & Technology, 32(23), 3821-3824. doi:10.1021/es9800784 es_ES
dc.description.references Maruthamuthu, P., & Neta, P. (1978). Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. The Journal of Physical Chemistry, 82(6), 710-713. doi:10.1021/j100495a019 es_ES
dc.description.references Merényi, G., Lind, J., Naumov, S., & Sonntag, C. von. (2010). Reaction of Ozone with Hydrogen Peroxide (Peroxone Process): A Revision of Current Mechanistic Concepts Based on Thermokinetic and Quantum-Chemical Considerations. Environmental Science & Technology, 44(9), 3505-3507. doi:10.1021/es100277d es_ES
dc.description.references Merényi, G., Lind, J., Naumov, S., & von Sonntag, C. (2010). The Reaction of Ozone with the Hydroxide Ion: Mechanistic Considerations Based on Thermokinetic and Quantum Chemical Calculations and the Role of HO4−in Superoxide Dismutation. Chemistry - A European Journal, 16(4), 1372-1377. doi:10.1002/chem.200802539 es_ES
dc.description.references Minchew, E. P., Gould, J. P., & Saunders, F. M. (1987). Multistage Decomposition Kinetics of Ozone In Dilute Aqueous Solutions. Ozone: Science & Engineering, 9(2), 165-177. doi:10.1080/01919518708552401 es_ES
dc.description.references Mizuno, T., Tsuno, H., & Yamada, H. (2007). Development of Ozone Self-Decomposition Model for Engineering Design. Ozone: Science & Engineering, 29(1), 55-63. doi:10.1080/01919510601115849 es_ES
dc.description.references Morozov, P. A., & Ershov, B. G. (2010). The influence of phosphates on the decomposition of ozone in water: Chain process inhibition. Russian Journal of Physical Chemistry A, 84(7), 1136-1140. doi:10.1134/s0036024410070101 es_ES
dc.description.references Schick, R., Strasser, I., & Stabel, H.-H. (1997). Fluorometric determination of low concentrations of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment. Water Research, 31(6), 1371-1378. doi:10.1016/s0043-1354(96)00410-1 es_ES
dc.description.references Sehested, K., Corfitzen, H., Holcman, J., & Hart, E. J. (1992). Decomposition of ozone in aqueous acetic acid solutions (pH 0-4). The Journal of Physical Chemistry, 96(2), 1005-1009. doi:10.1021/j100181a084 es_ES
dc.description.references Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1982). Ultraviolet spectrum and decay of the ozonide ion radical, O3-, in strong alkaline solution. The Journal of Physical Chemistry, 86(11), 2066-2069. doi:10.1021/j100208a031 es_ES
dc.description.references Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1984). Formation of ozone in the reaction of hydroxyl with O3- and the decay of the ozonide ion radical at pH 10-13. The Journal of Physical Chemistry, 88(2), 269-273. doi:10.1021/j150646a021 es_ES
dc.description.references Sein, M. M., Golloch, A., Schmidt, T. C., & von Sonntag, C. (2007). No Marked Kinetic Isotope Effect in the Peroxone (H2O2/D2O2+O3) Reaction: Mechanistic Consequences. ChemPhysChem, 8(14), 2065-2067. doi:10.1002/cphc.200700493 es_ES
dc.description.references Sotelo, J. L., Beltran, F. J., Benitez, F. J., & Beltran-Heredia, J. (1987). Ozone decomposition in water: kinetic study. Industrial & Engineering Chemistry Research, 26(1), 39-43. doi:10.1021/ie00061a008 es_ES
dc.description.references Staehelin, J., & Hoigne, J. (1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science & Technology, 16(10), 676-681. doi:10.1021/es00104a009 es_ES
dc.description.references Weiss, J. (1935). The catalytic decomposition of hydrogen peroxide on different metals. Transactions of the Faraday Society, 31, 1547. doi:10.1039/tf9353101547 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem