- -

Kinetic study of ozone decay in homogeneous phosphate-buffered medium

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Kinetic study of ozone decay in homogeneous phosphate-buffered medium

Mostrar el registro completo del ítem

Ferre Aracil, J.; Cardona, SC.; Navarro-Laboulais, J. (2015). Kinetic study of ozone decay in homogeneous phosphate-buffered medium. Ozone: Science and Engineering. 37(4):330-342. https://doi.org/10.1080/01919512.2014.998756

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71098

Ficheros en el ítem

Metadatos del ítem

Título: Kinetic study of ozone decay in homogeneous phosphate-buffered medium
Autor: Ferre Aracil, Jesús Cardona, S. C. Navarro-Laboulais, J.
Entidad UPV: Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
The ozone decomposition reaction is analyzed in a homogeneous reactor through in-situ measurement of the ozone depletion. The experiments were carried out at pHs between 1 to 11 in H2PO4-/HPO42 buffers at constant ionic ...[+]
Palabras clave: Ozone , Homogeneous Reactor , Ozone Decay , Ozone Decomposition , Phosphate Buffer
Derechos de uso: Cerrado
Fuente:
Ozone: Science and Engineering. (issn: 0191-9512 ) (eissn: 1547-6545 )
DOI: 10.1080/01919512.2014.998756
Editorial:
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Versión del editor: http://dx.doi.org/10.1080/01919512.2014.998756
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-FPI-2010-04/
Agradecimientos:
J. Ferre-Aracil acknowledges the support of the doctoral fellowship from the Universitat Politecnica de Valencia (UPV-PAID-FPI-2010-04).
Tipo: Artículo

References

Bezbarua, B. K., & Reckhow, D. A. (2004). Modification of the Standard Neutral Ozone Decomposition Model. Ozone: Science & Engineering, 26(4), 345-357. doi:10.1080/01919510490482179

Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O−2 Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 14(4), 1041-1100. doi:10.1063/1.555739

Biń, A. K., Machniewski, P., Wołyniec, J., & Pieńczakowska, A. (2013). Modeling of Ozone Reaction with Benzaldehyde Incorporating Ozone Decomposition in Aqueous Solutions. Ozone: Science & Engineering, 35(6), 489-500. doi:10.1080/01919512.2013.821595 [+]
Bezbarua, B. K., & Reckhow, D. A. (2004). Modification of the Standard Neutral Ozone Decomposition Model. Ozone: Science & Engineering, 26(4), 345-357. doi:10.1080/01919510490482179

Bielski, B. H. J., Cabelli, D. E., Arudi, R. L., & Ross, A. B. (1985). Reactivity of HO2/O−2 Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 14(4), 1041-1100. doi:10.1063/1.555739

Biń, A. K., Machniewski, P., Wołyniec, J., & Pieńczakowska, A. (2013). Modeling of Ozone Reaction with Benzaldehyde Incorporating Ozone Decomposition in Aqueous Solutions. Ozone: Science & Engineering, 35(6), 489-500. doi:10.1080/01919512.2013.821595

Black, E. D., & Hayon, E. (1970). Pulse radiolysis of phosphate anions H2PO4-, HPO42-, PO43-, and P2O74- in aqueous solutions. The Journal of Physical Chemistry, 74(17), 3199-3203. doi:10.1021/j100711a007

Buehler, R. E., Staehelin, J., & Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. The Journal of Physical Chemistry, 88(12), 2560-2564. doi:10.1021/j150656a026

Buxton, G. V., Greenstock, C. L., Helman, W. P., & Ross, A. B. (1988). Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17(2), 513-886. doi:10.1063/1.555805

Cantó, B., Cardona, S. C., Coll, C., Navarro-Laboulais, J., & Sánchez, E. (2011). Dynamic optimization of a gas-liquid reactor. Journal of Mathematical Chemistry, 50(2), 381-393. doi:10.1007/s10910-011-9941-1

Cantó, B., Coll, C., Sánchez, E., Cardona, S. C., & Navarro-Laboulais, J. (2013). On identifiability for chemical systems from measurable variables. Journal of Mathematical Chemistry, 52(4), 1023-1035. doi:10.1007/s10910-013-0149-4

Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2010). On bubble column reactor design for the determination of kinetic rate constants in gas-liquid systems. The Canadian Journal of Chemical Engineering, 88(4), 491-502. doi:10.1002/cjce.20327

Ershov, B. G., & Gordeev, A. V. (2008). A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiation Physics and Chemistry, 77(8), 928-935. doi:10.1016/j.radphyschem.2007.12.005

Fábián, I. (2006). Reactive intermediates in aqueous ozone decomposition: A mechanistic approach. Pure and Applied Chemistry, 78(8), 1559-1570. doi:10.1351/pac200678081559

Ferre-Aracil, J., Cardona, S. C., López, F., Abad, A., & Navarro-Laboulais, J. (2013). Unstationary Film Model for the Determination of Absolute Gas-Liquid Kinetic Rate Constants: Ozonation of Acid Red 27, Acid Orange 7, and Acid Blue 129. Ozone: Science & Engineering, 35(6), 423-437. doi:10.1080/01919512.2013.815104

Ferre-Aracil, J., Cardona, S. C., & Navarro-Laboulais, J. (2014). Determination and Validation of Henry’s Constant for Ozone in Phosphate Buffers Using Different Analytical Methodologies. Ozone: Science & Engineering, 37(2), 106-118. doi:10.1080/01919512.2014.927323

Gardoni, D., Vailati, A., & Canziani, R. (2012). Decay of Ozone in Water: A Review. Ozone: Science & Engineering, 34(4), 233-242. doi:10.1080/01919512.2012.686354

Grasso, D., & Weber, W. J. (1989). Mathematical Interpretation of Aqueous‐phase Ozone Decomposition Rates. Journal of Environmental Engineering, 115(3), 541-559. doi:10.1061/(asce)0733-9372(1989)115:3(541)

Gurol, M. D., & Singer, P. C. (1982). Kinetics of ozone decomposition: a dynamic approach. Environmental Science & Technology, 16(7), 377-383. doi:10.1021/es00101a003

Kosaka, K., Yamada, H., Matsui, S., Echigo, S., & Shishida, K. (1998). Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes:  Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environmental Science & Technology, 32(23), 3821-3824. doi:10.1021/es9800784

Maruthamuthu, P., & Neta, P. (1978). Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds. The Journal of Physical Chemistry, 82(6), 710-713. doi:10.1021/j100495a019

Merényi, G., Lind, J., Naumov, S., & Sonntag, C. von. (2010). Reaction of Ozone with Hydrogen Peroxide (Peroxone Process): A Revision of Current Mechanistic Concepts Based on Thermokinetic and Quantum-Chemical Considerations. Environmental Science & Technology, 44(9), 3505-3507. doi:10.1021/es100277d

Merényi, G., Lind, J., Naumov, S., & von Sonntag, C. (2010). The Reaction of Ozone with the Hydroxide Ion: Mechanistic Considerations Based on Thermokinetic and Quantum Chemical Calculations and the Role of HO4−in Superoxide Dismutation. Chemistry - A European Journal, 16(4), 1372-1377. doi:10.1002/chem.200802539

Minchew, E. P., Gould, J. P., & Saunders, F. M. (1987). Multistage Decomposition Kinetics of Ozone In Dilute Aqueous Solutions. Ozone: Science & Engineering, 9(2), 165-177. doi:10.1080/01919518708552401

Mizuno, T., Tsuno, H., & Yamada, H. (2007). Development of Ozone Self-Decomposition Model for Engineering Design. Ozone: Science & Engineering, 29(1), 55-63. doi:10.1080/01919510601115849

Morozov, P. A., & Ershov, B. G. (2010). The influence of phosphates on the decomposition of ozone in water: Chain process inhibition. Russian Journal of Physical Chemistry A, 84(7), 1136-1140. doi:10.1134/s0036024410070101

Schick, R., Strasser, I., & Stabel, H.-H. (1997). Fluorometric determination of low concentrations of H2O2 in water: Comparison with two other methods and application to environmental samples and drinking-water treatment. Water Research, 31(6), 1371-1378. doi:10.1016/s0043-1354(96)00410-1

Sehested, K., Corfitzen, H., Holcman, J., & Hart, E. J. (1992). Decomposition of ozone in aqueous acetic acid solutions (pH 0-4). The Journal of Physical Chemistry, 96(2), 1005-1009. doi:10.1021/j100181a084

Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1982). Ultraviolet spectrum and decay of the ozonide ion radical, O3-, in strong alkaline solution. The Journal of Physical Chemistry, 86(11), 2066-2069. doi:10.1021/j100208a031

Sehested, K., Holcman, J., Bjergbakke, E., & Hart, E. J. (1984). Formation of ozone in the reaction of hydroxyl with O3- and the decay of the ozonide ion radical at pH 10-13. The Journal of Physical Chemistry, 88(2), 269-273. doi:10.1021/j150646a021

Sein, M. M., Golloch, A., Schmidt, T. C., & von Sonntag, C. (2007). No Marked Kinetic Isotope Effect in the Peroxone (H2O2/D2O2+O3) Reaction: Mechanistic Consequences. ChemPhysChem, 8(14), 2065-2067. doi:10.1002/cphc.200700493

Sotelo, J. L., Beltran, F. J., Benitez, F. J., & Beltran-Heredia, J. (1987). Ozone decomposition in water: kinetic study. Industrial & Engineering Chemistry Research, 26(1), 39-43. doi:10.1021/ie00061a008

Staehelin, J., & Hoigne, J. (1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environmental Science & Technology, 16(10), 676-681. doi:10.1021/es00104a009

Weiss, J. (1935). The catalytic decomposition of hydrogen peroxide on different metals. Transactions of the Faraday Society, 31, 1547. doi:10.1039/tf9353101547

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem