Mostrar el registro sencillo del ítem
dc.contributor.author | Panagopoulou, Anna | es_ES |
dc.contributor.author | Vázquez Molina, Joan | es_ES |
dc.contributor.author | Kyritsis, Apostolos | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.contributor.author | Vallés Lluch, Ana | es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria | es_ES |
dc.contributor.author | Pissis, Polykarpos | es_ES |
dc.date.accessioned | 2016-10-05T07:07:07Z | |
dc.date.available | 2016-10-05T07:07:07Z | |
dc.date.issued | 2013-09 | |
dc.identifier.issn | 1557-1858 | |
dc.identifier.uri | http://hdl.handle.net/10251/71180 | |
dc.description.abstract | Glass transition and water dynamics in hydrated hyaluronic acid (HA) hydrogels crosslinked by divinyl sulfone (DVS) were studied by differential scanning calorimetry (DSC), dielectric relaxation spectroscopy (DRS) and water sorption-desorption (ESI) measurements. A critical water fraction of about h (w) = 0.17 (g of water per g of hydrated HA) for a change in the hydration properties of the material was estimated. Water crystallization was recorded by DSC during cooling and heating for water fraction values h (w) a parts per thousand yenaEuro parts per thousand 0.31. The glass transition of the hydrated system was recorded in the water fraction region 0.06 a parts per thousand currency signaEuro parts per thousand h (w) a parts per thousand currency signaEuro parts per thousand 0.59. The T (g) was found to decrease with increasing hydration level, starting from T (g) = -48 A degrees C down to about T (g) = -80 A degrees C and then to stabilize there, for the hydration levels where water crystallization occurs, suggesting that the origin of the glass transition is the combined motion of uncrystallized water molecules attached to primary hydration sites and segments of the HA chains. DRS studies revealed two relaxation peaks, associated with the main secondary relaxation process of uncrystallized water molecules (UCW) triggering the mobility of polar groups and the segmental mobility of HA chains (alpha relaxation). The alpha relaxation was in good agreement with the results by DSC. A qualitative change in the dynamics of the alpha relaxation was found for h (w) = 0.23 and was attributed to a reorganization of water in the material due to structural changes. Finally, the dielectric strength of the relaxation of UCW was found to decrease in the water fraction region of the structural changes, i.e. for h (w) similar to 0.23. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Food Biophysics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Molecular mobility | es_ES |
dc.subject | Hydrated hyaluronic acid | es_ES |
dc.subject | Hydrogel | es_ES |
dc.subject | Uncrystallized water | es_ES |
dc.subject | Dielectric relaxation | es_ES |
dc.subject | Glass transition | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Glass transition and water dynamics in hyaluronic acid hydrogels | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11483-013-9295-2 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Panagopoulou, A.; Vázquez Molina, J.; Kyritsis, A.; Monleón Pradas, M.; Vallés Lluch, A.; Gallego-Ferrer, G.; Pissis, P. (2013). Glass transition and water dynamics in hyaluronic acid hydrogels. Food Biophysics. 8(3):192-202. https://doi.org/10.1007/s11483-013-9295-2 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11483-013-9295-2 | es_ES |
dc.description.upvformatpinicio | 192 | es_ES |
dc.description.upvformatpfin | 202 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 253417 | es_ES |
dc.description.references | T.C. Laurent, Ciba Foundation Symposium, vol. 143 (John Wiley and Sons, New York, 1989), pp. 1–298 | es_ES |
dc.description.references | J. Necas, L. Bartosikov, P. Brauner, J. Kolar, Vet. Med. 53(8), 397–411 (2008) | es_ES |
dc.description.references | M.K. Cowman, M. Li, E.A. Balazs, Biophys. J. 75, 2030–2037 (1998) | es_ES |
dc.description.references | M.K. Cowman, S. Matsuoka, Carbohydr. Res. 340, 791–809 (2005) | es_ES |
dc.description.references | C.E. Schanté, G. Zuber, C. Herlin, T.F. Vendamme, Carbohydr. Polym. 85, 469–489 (2011) | es_ES |
dc.description.references | E.J. Oh, K. Park, K.S. Kim, J. Kim, J.-A. Yang, J.-H. Kong, M.Y. Lee, A.S. Hoffman, S.K. Hahn, J. Control. Release 141, 2–12 (2010) | es_ES |
dc.description.references | A.S. Hoffman, Adv. Drug Deliv. Rev. 54, 3–12 (2002) | es_ES |
dc.description.references | F. Lee, M. Kurisawa, Acta Biomaterialia 9(2), 5143–5152 (2013) | es_ES |
dc.description.references | H.N. Joshi, E.M. Topp, Int. J. Pharm. 80, 213–225 (1992) | es_ES |
dc.description.references | J. Kucerik, A. Prusova, A. Rotaru, K. Flimel, J. Janecek, P. Conte, Thermochim. Acta 523, 245–249 (2011) | es_ES |
dc.description.references | M.N. Collins, C. Birkinshaw, J. Mater. Sci. Mater. Med. 19, 3335–3343 (2008) | es_ES |
dc.description.references | R. Servaty, J. Schiller, H. Binder, K. Arnold, Int. J. Biol. Macromol. 28, 121–127 (2001) | es_ES |
dc.description.references | J. Kaufmann, K. Möhle, H.J. Hofmann, K. Arnold, J. Mol. Struct. (THEOCHEM) 422, 109–121 (1998) | es_ES |
dc.description.references | H. Sugimoto, T. Miki, K. Κanayama, M. Norimoto, J. Non-Cryst. Solids 354, 3220–3224 (2008) | es_ES |
dc.description.references | J. Mijović, Y. Bian, R.A. Gross, B. Chen, Macromolecules 38, 10812–10819 (2005) | es_ES |
dc.description.references | J. Swenson, H. Jansson, J. Hedström, R. Bergman, J. Phys. Condens. Matter 19, 205109–205117 (2007) | es_ES |
dc.description.references | C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628–12631 (2009) | es_ES |
dc.description.references | W. Doster, S. Busch, A.M. Gaspar, M.S. Appavu, J. Wuttke, H. Scheer, Phys. Rev. Lett. 104, 098101–098104 (2010) | es_ES |
dc.description.references | A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593–4602 (2012) | es_ES |
dc.description.references | P. Pissis, A. Kyritsis, J. Polym. Sci. B Polym. Phys. 51(3), 159–175 (2013) | es_ES |
dc.description.references | G. Careri, Prog. Biophys. Mol. Biol. 70, 223–249 (1998) | es_ES |
dc.description.references | S. Cerveny, A. Alegria, J. Colmenero, Phys. Rev. E 77, 031803–031807 (2008) | es_ES |
dc.description.references | K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Phil. Mag. 91, 1809–1835 (2011) | es_ES |
dc.description.references | A. Panagopoulou, A. Kyritsis, A.M. Aravantinou, D. Nanopoulos, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Food Biophys. 6, 199–209 (2011) | es_ES |
dc.description.references | A. Panagopoulou, A. Kyritsis, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Biochim. Biophys. Acta 1814, 1984–1996 (2011) | es_ES |
dc.description.references | R.B. Gregory, Protein-Solvent Interactions (Marcel Dekker, New York, USA, 1995) | es_ES |
dc.description.references | D. Ringe, G.A. Petsko, Biophys. Chem. 105, 667–680 (2003) | es_ES |
dc.description.references | P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Proc. Natl. Acad. Sci. 101, 14408–14413 (2004) | es_ES |
dc.description.references | Y. Miyazaki, T. Matsuo, H. Suga, J. Phys. Chem. B 104, 8044–8052 (2000) | es_ES |
dc.description.references | N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, K.L. Ngai, S. Capaccioli, J. Phys. Chem. B 113, 14448–14456 (2009) | es_ES |
dc.description.references | S. Khodadadi, A. Malkovskiy, A. Kisliuk, A.P. Sokolov, Biochim. Biophys. Acta 1804, 15–19 (2010) | es_ES |
dc.description.references | H. Jansson, J. Swenson, Biochim. Biophys. Acta 1804, 20–26 (2010) | es_ES |
dc.description.references | A.L. Tournier, J. Xu, J.C. Smith, Biophys. J. 85, 1871–1875 (2003) | es_ES |
dc.description.references | D. Porter, F. Vollrath, Biochim. Biophys. Acta 1824, 785–791 (2012) | es_ES |
dc.description.references | T. Vuletić, S. Dolanski Babić, T. Ivek, D. Grgičin, S. Tomić, Phys. Rev. E 82, 011922–011932 (2010) | es_ES |
dc.description.references | L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. A Phys. Chem. 81A, 89–96 (1977) | es_ES |
dc.description.references | F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002) | es_ES |
dc.description.references | R.H. Cole, K.S. Cole, J. Chem. Phys. 10, 98–105 (1942) | es_ES |
dc.description.references | R.P. Chartoff, P.T. Weissman, A. Sirkar, in The Application of Dynamic Mechanical Methods to T g Determination in polymers: An overview, Assignment of the Glass Transition, ASTM STP 1249, ed. by R.J. Seyler (American Society for Testing and Materials, Philadelphia, 1994), pp. 88–107 | es_ES |
dc.description.references | H. Vogel, Phys. Z. 22, 645–646 (1921) | es_ES |
dc.description.references | A. Anagnostopoulou-Konsta, P. Pissis, J. Phys. D. Appl. Phys. 20, 1168–1174 (1987) | es_ES |
dc.description.references | D. Daoukaki-Diamanti, P. Pissis, G. Boudouris, Chem. Phys. 91, 315–325 (1984) | es_ES |
dc.description.references | P. Pissis, J. Phys. D. Appl. Phys. 18, 1897–1908 (1985) | es_ES |
dc.description.references | S. Ratkovic, P. Pissis, J. Mater. Sci. 32, 3061–3068 (1997) | es_ES |
dc.description.references | P. Pissis, J. Exp. Bot 41, 677–684 (1990) | es_ES |