- -

Glass transition and water dynamics in hyaluronic acid hydrogels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glass transition and water dynamics in hyaluronic acid hydrogels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Panagopoulou, Anna es_ES
dc.contributor.author Vázquez Molina, Joan es_ES
dc.contributor.author Kyritsis, Apostolos es_ES
dc.contributor.author Monleón Pradas, Manuel es_ES
dc.contributor.author Vallés Lluch, Ana es_ES
dc.contributor.author Gallego-Ferrer, Gloria es_ES
dc.contributor.author Pissis, Polykarpos es_ES
dc.date.accessioned 2016-10-05T07:07:07Z
dc.date.available 2016-10-05T07:07:07Z
dc.date.issued 2013-09
dc.identifier.issn 1557-1858
dc.identifier.uri http://hdl.handle.net/10251/71180
dc.description.abstract Glass transition and water dynamics in hydrated hyaluronic acid (HA) hydrogels crosslinked by divinyl sulfone (DVS) were studied by differential scanning calorimetry (DSC), dielectric relaxation spectroscopy (DRS) and water sorption-desorption (ESI) measurements. A critical water fraction of about h (w) = 0.17 (g of water per g of hydrated HA) for a change in the hydration properties of the material was estimated. Water crystallization was recorded by DSC during cooling and heating for water fraction values h (w) a parts per thousand yenaEuro parts per thousand 0.31. The glass transition of the hydrated system was recorded in the water fraction region 0.06 a parts per thousand currency signaEuro parts per thousand h (w) a parts per thousand currency signaEuro parts per thousand 0.59. The T (g) was found to decrease with increasing hydration level, starting from T (g) = -48 A degrees C down to about T (g) = -80 A degrees C and then to stabilize there, for the hydration levels where water crystallization occurs, suggesting that the origin of the glass transition is the combined motion of uncrystallized water molecules attached to primary hydration sites and segments of the HA chains. DRS studies revealed two relaxation peaks, associated with the main secondary relaxation process of uncrystallized water molecules (UCW) triggering the mobility of polar groups and the segmental mobility of HA chains (alpha relaxation). The alpha relaxation was in good agreement with the results by DSC. A qualitative change in the dynamics of the alpha relaxation was found for h (w) = 0.23 and was attributed to a reorganization of water in the material due to structural changes. Finally, the dielectric strength of the relaxation of UCW was found to decrease in the water fraction region of the structural changes, i.e. for h (w) similar to 0.23. es_ES
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Food Biophysics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Molecular mobility es_ES
dc.subject Hydrated hyaluronic acid es_ES
dc.subject Hydrogel es_ES
dc.subject Uncrystallized water es_ES
dc.subject Dielectric relaxation es_ES
dc.subject Glass transition es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Glass transition and water dynamics in hyaluronic acid hydrogels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11483-013-9295-2
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Panagopoulou, A.; Vázquez Molina, J.; Kyritsis, A.; Monleón Pradas, M.; Vallés Lluch, A.; Gallego-Ferrer, G.; Pissis, P. (2013). Glass transition and water dynamics in hyaluronic acid hydrogels. Food Biophysics. 8(3):192-202. https://doi.org/10.1007/s11483-013-9295-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11483-013-9295-2 es_ES
dc.description.upvformatpinicio 192 es_ES
dc.description.upvformatpfin 202 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 253417 es_ES
dc.description.references T.C. Laurent, Ciba Foundation Symposium, vol. 143 (John Wiley and Sons, New York, 1989), pp. 1–298 es_ES
dc.description.references J. Necas, L. Bartosikov, P. Brauner, J. Kolar, Vet. Med. 53(8), 397–411 (2008) es_ES
dc.description.references M.K. Cowman, M. Li, E.A. Balazs, Biophys. J. 75, 2030–2037 (1998) es_ES
dc.description.references M.K. Cowman, S. Matsuoka, Carbohydr. Res. 340, 791–809 (2005) es_ES
dc.description.references C.E. Schanté, G. Zuber, C. Herlin, T.F. Vendamme, Carbohydr. Polym. 85, 469–489 (2011) es_ES
dc.description.references E.J. Oh, K. Park, K.S. Kim, J. Kim, J.-A. Yang, J.-H. Kong, M.Y. Lee, A.S. Hoffman, S.K. Hahn, J. Control. Release 141, 2–12 (2010) es_ES
dc.description.references A.S. Hoffman, Adv. Drug Deliv. Rev. 54, 3–12 (2002) es_ES
dc.description.references F. Lee, M. Kurisawa, Acta Biomaterialia 9(2), 5143–5152 (2013) es_ES
dc.description.references H.N. Joshi, E.M. Topp, Int. J. Pharm. 80, 213–225 (1992) es_ES
dc.description.references J. Kucerik, A. Prusova, A. Rotaru, K. Flimel, J. Janecek, P. Conte, Thermochim. Acta 523, 245–249 (2011) es_ES
dc.description.references M.N. Collins, C. Birkinshaw, J. Mater. Sci. Mater. Med. 19, 3335–3343 (2008) es_ES
dc.description.references R. Servaty, J. Schiller, H. Binder, K. Arnold, Int. J. Biol. Macromol. 28, 121–127 (2001) es_ES
dc.description.references J. Kaufmann, K. Möhle, H.J. Hofmann, K. Arnold, J. Mol. Struct. (THEOCHEM) 422, 109–121 (1998) es_ES
dc.description.references H. Sugimoto, T. Miki, K. Κanayama, M. Norimoto, J. Non-Cryst. Solids 354, 3220–3224 (2008) es_ES
dc.description.references J. Mijović, Y. Bian, R.A. Gross, B. Chen, Macromolecules 38, 10812–10819 (2005) es_ES
dc.description.references J. Swenson, H. Jansson, J. Hedström, R. Bergman, J. Phys. Condens. Matter 19, 205109–205117 (2007) es_ES
dc.description.references C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628–12631 (2009) es_ES
dc.description.references W. Doster, S. Busch, A.M. Gaspar, M.S. Appavu, J. Wuttke, H. Scheer, Phys. Rev. Lett. 104, 098101–098104 (2010) es_ES
dc.description.references A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593–4602 (2012) es_ES
dc.description.references P. Pissis, A. Kyritsis, J. Polym. Sci. B Polym. Phys. 51(3), 159–175 (2013) es_ES
dc.description.references G. Careri, Prog. Biophys. Mol. Biol. 70, 223–249 (1998) es_ES
dc.description.references S. Cerveny, A. Alegria, J. Colmenero, Phys. Rev. E 77, 031803–031807 (2008) es_ES
dc.description.references K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Phil. Mag. 91, 1809–1835 (2011) es_ES
dc.description.references A. Panagopoulou, A. Kyritsis, A.M. Aravantinou, D. Nanopoulos, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Food Biophys. 6, 199–209 (2011) es_ES
dc.description.references A. Panagopoulou, A. Kyritsis, R. Sabater i Serra, J.L. Gómez Ribellez, N. Shinyashiki, P. Pissis, Biochim. Biophys. Acta 1814, 1984–1996 (2011) es_ES
dc.description.references R.B. Gregory, Protein-Solvent Interactions (Marcel Dekker, New York, USA, 1995) es_ES
dc.description.references D. Ringe, G.A. Petsko, Biophys. Chem. 105, 667–680 (2003) es_ES
dc.description.references P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Proc. Natl. Acad. Sci. 101, 14408–14413 (2004) es_ES
dc.description.references Y. Miyazaki, T. Matsuo, H. Suga, J. Phys. Chem. B 104, 8044–8052 (2000) es_ES
dc.description.references N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, K.L. Ngai, S. Capaccioli, J. Phys. Chem. B 113, 14448–14456 (2009) es_ES
dc.description.references S. Khodadadi, A. Malkovskiy, A. Kisliuk, A.P. Sokolov, Biochim. Biophys. Acta 1804, 15–19 (2010) es_ES
dc.description.references H. Jansson, J. Swenson, Biochim. Biophys. Acta 1804, 20–26 (2010) es_ES
dc.description.references A.L. Tournier, J. Xu, J.C. Smith, Biophys. J. 85, 1871–1875 (2003) es_ES
dc.description.references D. Porter, F. Vollrath, Biochim. Biophys. Acta 1824, 785–791 (2012) es_ES
dc.description.references T. Vuletić, S. Dolanski Babić, T. Ivek, D. Grgičin, S. Tomić, Phys. Rev. E 82, 011922–011932 (2010) es_ES
dc.description.references L. Greenspan, Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bur. Stand. A Phys. Chem. 81A, 89–96 (1977) es_ES
dc.description.references F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002) es_ES
dc.description.references R.H. Cole, K.S. Cole, J. Chem. Phys. 10, 98–105 (1942) es_ES
dc.description.references R.P. Chartoff, P.T. Weissman, A. Sirkar, in The Application of Dynamic Mechanical Methods to T g Determination in polymers: An overview, Assignment of the Glass Transition, ASTM STP 1249, ed. by R.J. Seyler (American Society for Testing and Materials, Philadelphia, 1994), pp. 88–107 es_ES
dc.description.references H. Vogel, Phys. Z. 22, 645–646 (1921) es_ES
dc.description.references A. Anagnostopoulou-Konsta, P. Pissis, J. Phys. D. Appl. Phys. 20, 1168–1174 (1987) es_ES
dc.description.references D. Daoukaki-Diamanti, P. Pissis, G. Boudouris, Chem. Phys. 91, 315–325 (1984) es_ES
dc.description.references P. Pissis, J. Phys. D. Appl. Phys. 18, 1897–1908 (1985) es_ES
dc.description.references S. Ratkovic, P. Pissis, J. Mater. Sci. 32, 3061–3068 (1997) es_ES
dc.description.references P. Pissis, J. Exp. Bot 41, 677–684 (1990) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem