dc.contributor.author |
Opanasenko, Maksym
|
es_ES |
dc.contributor.author |
Dhakshinamoorthy, Amarajothi
|
es_ES |
dc.contributor.author |
Shamzhy, Mariya
|
es_ES |
dc.contributor.author |
Nachtigall, Petr
|
es_ES |
dc.contributor.author |
Horacek, Michal
|
es_ES |
dc.contributor.author |
García Gómez, Hermenegildo
|
es_ES |
dc.contributor.author |
Cejka, Jiri
|
es_ES |
dc.date.accessioned |
2016-10-11T06:45:25Z |
|
dc.date.available |
2016-10-11T06:45:25Z |
|
dc.date.issued |
2013 |
|
dc.identifier.issn |
2044-4753 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/71579 |
|
dc.description.abstract |
[EN] The catalytic behavior of metal-organic-frameworks (MOFs) CuBTC and FeBTC was investigated in Knoevenagel condensation of cyclohexane carbaldehyde and benzaldehyde with active methylene compounds and compared with zeolites BEA and TS-1. High yields were achieved over the CuBTC catalyst in the Knoevenagel condensation involving malonitrile, especially at a relatively low reaction temperature (80 degrees C); no leaching of the active phase was evidenced. In contrast, zeolites were not active under such reaction conditions. We propose an activation of malonitrile on a pair of adjacent Cu ions to explain the high catalytic activity of CuBTC with respect to conventional catalysts. Compared with CuBTC, zeolites exhibited usually lower selectivities, which is ascribed to a high acid strength of their active sites promoting consecutive reactions. |
es_ES |
dc.description.sponsorship |
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. P.N., M. H., and J.C. thank the Czech Grant Agency for the financial support (Centre of Excellence - P106/12/G015). |
en_EN |
dc.language |
Inglés |
es_ES |
dc.publisher |
Royal Society of Chemistry |
es_ES |
dc.relation.ispartof |
Catalysis Science and Technology |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
BASE CATALYSTS |
es_ES |
dc.subject |
METAL-ORGANIC FRAMEWORKS |
es_ES |
dc.subject |
SOLVENT-FREE CONDITIONS |
es_ES |
dc.subject |
ELECTROPHILIC ALKENES |
es_ES |
dc.subject |
SOLID-STATE |
es_ES |
dc.subject |
AB-INITIO |
es_ES |
dc.subject |
ALDEHYDES |
es_ES |
dc.subject |
WATER |
es_ES |
dc.subject |
ACIDS |
es_ES |
dc.subject |
SIZE |
es_ES |
dc.subject.classification |
QUIMICA ORGANICA |
es_ES |
dc.title |
Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1039/c2cy20586f |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/ |
|
dc.relation.projectID |
info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/CZ/Intelligent design of nanoporous adsorbents and catalysts (IDENAC)/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Química - Departament de Química |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química |
es_ES |
dc.description.bibliographicCitation |
Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.; Nachtigall, P.; Horacek, M.; García Gómez, H.; Cejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology. 3(2):500-507. https://doi.org/10.1039/c2cy20586f |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.1039/c2cy20586f |
es_ES |
dc.description.upvformatpinicio |
500 |
es_ES |
dc.description.upvformatpfin |
507 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
3 |
es_ES |
dc.description.issue |
2 |
es_ES |
dc.relation.senia |
242240 |
es_ES |
dc.contributor.funder |
Czech Science Foundation |
|
dc.contributor.funder |
European Commission |
|
dc.description.references |
L. F. Tietze and U.Beifuss, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 341 |
es_ES |
dc.description.references |
Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004 |
es_ES |
dc.description.references |
Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e |
es_ES |
dc.description.references |
Lai, S. M., Ng, C. P., Martin-Aranda, R., & Yeung, K. L. (2003). Knoevenagel condensation reaction in zeolite membrane microreactor. Microporous and Mesoporous Materials, 66(2-3), 239-252. doi:10.1016/j.micromeso.2003.09.014 |
es_ES |
dc.description.references |
Borah, H. N., Deb, M. L., Boruah, R. C., & Bhuyan, P. J. (2005). Stereoselective intramolecular hetero Diels–Alder reactions of 1-oxa-1,3-butadienes: synthesis of novel annelated pyrrolo[1,2-a]indoles. Tetrahedron Letters, 46(19), 3391-3393. doi:10.1016/j.tetlet.2005.03.091 |
es_ES |
dc.description.references |
Ayoubi, S. A.-E., Texier-Boullet, F., & Hamelin, J. (1994). Minute Synthesis of Electrophilic Alkenes under Microwave Irradiation. Synthesis, 1994(03), 258-260. doi:10.1055/s-1994-25453 |
es_ES |
dc.description.references |
Binev, I. G., Binev, Y. I., Stamboliyska, B. A., & Juchnovski, I. N. (1997). IR spectra and structure of benzylidenemalononitrile and its cyanide, methoxide and heptylamine adducts: experimental and ab initio studies. Journal of Molecular Structure, 435(3), 235-245. doi:10.1016/s0022-2860(97)00193-2 |
es_ES |
dc.description.references |
Fringuelli, F., Brufola, G., Piermatti, O., & Pizzo, F. (1997). Efficient One-Pot Synthesis of 7-Azacoumarins by Knoevenagel Reaction Using Water as Reaction Medium. HETEROCYCLES, 45(9), 1715. doi:10.3987/com-97-7857 |
es_ES |
dc.description.references |
Prajapati, D., Lekhok, K. C., Sandhu, J. S., & Ghosh, A. C. (1996). Lithium bromide as a new catalyst for carbon–carbon bond formation in the solid state. J. Chem. Soc., Perkin Trans. 1, (9), 959-960. doi:10.1039/p19960000959 |
es_ES |
dc.description.references |
SARAVANAMURUGAN, S., PALANICHAMY, M., HARTMANN, M., & MURUGESAN, V. (2006). Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A: General, 298, 8-15. doi:10.1016/j.apcata.2005.09.014 |
es_ES |
dc.description.references |
Kantevari, S., Bantu, R., & Nagarapu, L. (2007). HClO4–SiO2 and PPA–SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. Journal of Molecular Catalysis A: Chemical, 269(1-2), 53-57. doi:10.1016/j.molcata.2006.12.039 |
es_ES |
dc.description.references |
Yadav, J. S., Reddy, B. V. S., Basak, A. K., Visali, B., Narsaiah, A. V., & Nagaiah, K. (2004). Phosphane-Catalyzed Knoevenagel Condensation: A Facile Synthesis ofα-Cyanoacrylates andα-Cyanoacrylonitriles. European Journal of Organic Chemistry, 2004(3), 546-551. doi:10.1002/ejoc.200300513 |
es_ES |
dc.description.references |
Green, B., Crane, R. I., Khaidem, I. S., Leighton, R. S., Newaz, S. S., & Smyser, T. E. (1985). Synthesis of steroidal 16,17-fused unsaturated .delta.-lactones. The Journal of Organic Chemistry, 50(5), 640-644. doi:10.1021/jo00205a016 |
es_ES |
dc.description.references |
Shanthan Rao, P., & Venkataratnam, R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Letters, 32(41), 5821-5822. doi:10.1016/s0040-4039(00)93564-0 |
es_ES |
dc.description.references |
Kumbhare, R. M., & Sridhar, M. (2008). Magnesium fluoride catalyzed Knoevenagel reaction: An efficient synthesis of electrophilic alkenes. Catalysis Communications, 9(3), 403-405. doi:10.1016/j.catcom.2007.07.027 |
es_ES |
dc.description.references |
Bartoli, G., Beleggia, R., Giuli, S., Giuliani, A., Marcantoni, E., Massaccesi, M., & Paoletti, M. (2006). The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Letters, 47(37), 6501-6504. doi:10.1016/j.tetlet.2006.07.031 |
es_ES |
dc.description.references |
RAJASEKHARPULLABHOTLA, V., RAHMAN, A., & JONNALAGADDA, S. (2009). Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach. Catalysis Communications, 10(4), 365-369. doi:10.1016/j.catcom.2008.09.021 |
es_ES |
dc.description.references |
Bose, D. S., & Narsaiah, A. V. (2001). An efficient benzyltriethylammonium chloride catalysed preparation of electrophilic alkenes: a practical synthesis of trimethoprim. Journal of Chemical Research, 2001(1), 36-38. doi:10.3184/030823401103168217 |
es_ES |
dc.description.references |
Bennazha, J., Zahouilly, M., Boukhari, A., & Holt, E. M. (2003). Investigation of the basis of catalytic activity of solid state phosphate complexes in the Knoevenagel condensation. Journal of Molecular Catalysis A: Chemical, 202(1-2), 247-252. doi:10.1016/s1381-1169(03)00208-5 |
es_ES |
dc.description.references |
Reddy, T. I., & Varma, R. S. (1997). Rare-earth (RE) exchanged NaY zeolite promoted knoevenagel condensation. Tetrahedron Letters, 38(10), 1721-1724. doi:10.1016/s0040-4039(97)00180-9 |
es_ES |
dc.description.references |
Joshi, U. ., Joshi, P. ., Tamhankar, S. ., Joshi, V. ., Rode, C. ., & Shiralkar, V. . (2003). Effect of nonframework cations and crystallinity on the basicity of NaX zeolites. Applied Catalysis A: General, 239(1-2), 209-220. doi:10.1016/s0926-860x(02)00391-5 |
es_ES |
dc.description.references |
Corma, A., Fornés, V., Martín-Aranda, R. M., García, H., & Primo, J. (1990). Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters. Applied Catalysis, 59(1), 237-248. doi:10.1016/s0166-9834(00)82201-0 |
es_ES |
dc.description.references |
Corma, A., & Martín-Aranda, R. M. (1993). Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Applied Catalysis A: General, 105(2), 271-279. doi:10.1016/0926-860x(93)80252-l |
es_ES |
dc.description.references |
Bigi, F., Chesini, L., Maggi, R., & Sartori, G. (1999). Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids. The Journal of Organic Chemistry, 64(3), 1033-1035. doi:10.1021/jo981794r |
es_ES |
dc.description.references |
Kubota, Y., Nishizaki, Y., Ikeya, H., Saeki, M., Hida, T., Kawazu, S., … Sugi, Y. (2004). Organic–silicate hybrid catalysts based on various defined structures for Knoevenagel condensation. Microporous and Mesoporous Materials, 70(1-3), 135-149. doi:10.1016/j.micromeso.2004.02.017 |
es_ES |
dc.description.references |
Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n |
es_ES |
dc.description.references |
Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 |
es_ES |
dc.description.references |
Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997 |
es_ES |
dc.description.references |
Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g |
es_ES |
dc.description.references |
Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 |
es_ES |
dc.description.references |
Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., … Yaghi, O. M. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523-527. doi:10.1038/nature02311 |
es_ES |
dc.description.references |
Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 |
es_ES |
dc.description.references |
Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 |
es_ES |
dc.description.references |
Thimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139 |
es_ES |
dc.description.references |
Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a |
es_ES |
dc.description.references |
Roberts, J. M., Fini, B. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2012). Urea Metal–Organic Frameworks as Effective and Size-Selective Hydrogen-Bond Catalysts. Journal of the American Chemical Society, 134(7), 3334-3337. doi:10.1021/ja2108118 |
es_ES |
dc.description.references |
Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d |
es_ES |
dc.description.references |
Nguyen, L. T. L., Nguyen, T. T., Nguyen, K. D., & Phan, N. T. S. (2012). Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Applied Catalysis A: General, 425-426, 44-52. doi:10.1016/j.apcata.2012.02.045 |
es_ES |
dc.description.references |
Opanasenko, M., Shamzhy, M., & Čejka, J. (2012). Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 5(4), 1024-1031. doi:10.1002/cctc.201200232 |
es_ES |
dc.description.references |
Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 |
es_ES |
dc.description.references |
GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 |
es_ES |
dc.description.references |
Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058 |
es_ES |
dc.description.references |
Van der Pol, A. J. H. P., & van Hooff, J. H. C. (1992). Parameters affecting the synthesis of titanium silicalite 1. Applied Catalysis A: General, 92(2), 93-111. doi:10.1016/0926-860x(92)80309-z |
es_ES |
dc.description.references |
S. J. Gregg and K. S. W.Sing, Adsorption, Surface Area and Porosity, ed. S. J. Gregg and K. S. W. Sing, Academic Press Inc, London, 2nd edn, 1982, p. 303 |
es_ES |
dc.description.references |
Ferwerda, R., van der Maas, J. H., & van Duijneveldt, F. B. (1996). Pyridine adsorption onto metal oxides: an ab initio study of model systems. Journal of Molecular Catalysis A: Chemical, 104(3), 319-328. doi:10.1016/1381-1169(95)00179-4 |
es_ES |
dc.description.references |
Žilková, N., Bejblová, M., Gil, B., Zones, S. I., Burton, A. W., Chen, C.-Y., … Čejka, J. (2009). The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 266(1), 79-91. doi:10.1016/j.jcat.2009.05.017 |
es_ES |