- -

Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation

Show simple item record

Files in this item

dc.contributor.author Opanasenko, Maksym es_ES
dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Shamzhy, Mariya es_ES
dc.contributor.author Nachtigall, Petr es_ES
dc.contributor.author Horacek, Michal es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.contributor.author Cejka, Jiri es_ES
dc.date.accessioned 2016-10-11T06:45:25Z
dc.date.available 2016-10-11T06:45:25Z
dc.date.issued 2013
dc.identifier.issn 2044-4753
dc.identifier.uri http://hdl.handle.net/10251/71579
dc.description.abstract [EN] The catalytic behavior of metal-organic-frameworks (MOFs) CuBTC and FeBTC was investigated in Knoevenagel condensation of cyclohexane carbaldehyde and benzaldehyde with active methylene compounds and compared with zeolites BEA and TS-1. High yields were achieved over the CuBTC catalyst in the Knoevenagel condensation involving malonitrile, especially at a relatively low reaction temperature (80 degrees C); no leaching of the active phase was evidenced. In contrast, zeolites were not active under such reaction conditions. We propose an activation of malonitrile on a pair of adjacent Cu ions to explain the high catalytic activity of CuBTC with respect to conventional catalysts. Compared with CuBTC, zeolites exhibited usually lower selectivities, which is ascribed to a high acid strength of their active sites promoting consecutive reactions. es_ES
dc.description.sponsorship The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. P.N., M. H., and J.C. thank the Czech Grant Agency for the financial support (Centre of Excellence - P106/12/G015). en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject BASE CATALYSTS es_ES
dc.subject METAL-ORGANIC FRAMEWORKS es_ES
dc.subject SOLVENT-FREE CONDITIONS es_ES
dc.subject ELECTROPHILIC ALKENES es_ES
dc.subject SOLID-STATE es_ES
dc.subject AB-INITIO es_ES
dc.subject ALDEHYDES es_ES
dc.subject WATER es_ES
dc.subject ACIDS es_ES
dc.subject SIZE es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c2cy20586f
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
dc.relation.projectID info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/CZ/Intelligent design of nanoporous adsorbents and catalysts (IDENAC)/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.; Nachtigall, P.; Horacek, M.; García Gómez, H.; Cejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology. 3(2):500-507. https://doi.org/10.1039/c2cy20586f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c2cy20586f es_ES
dc.description.upvformatpinicio 500 es_ES
dc.description.upvformatpfin 507 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 242240 es_ES
dc.contributor.funder Czech Science Foundation
dc.contributor.funder European Commission
dc.description.references L. F. Tietze and U.Beifuss, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 341 es_ES
dc.description.references Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004 es_ES
dc.description.references Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e es_ES
dc.description.references Lai, S. M., Ng, C. P., Martin-Aranda, R., & Yeung, K. L. (2003). Knoevenagel condensation reaction in zeolite membrane microreactor. Microporous and Mesoporous Materials, 66(2-3), 239-252. doi:10.1016/j.micromeso.2003.09.014 es_ES
dc.description.references Borah, H. N., Deb, M. L., Boruah, R. C., & Bhuyan, P. J. (2005). Stereoselective intramolecular hetero Diels–Alder reactions of 1-oxa-1,3-butadienes: synthesis of novel annelated pyrrolo[1,2-a]indoles. Tetrahedron Letters, 46(19), 3391-3393. doi:10.1016/j.tetlet.2005.03.091 es_ES
dc.description.references Ayoubi, S. A.-E., Texier-Boullet, F., & Hamelin, J. (1994). Minute Synthesis of Electrophilic Alkenes under Microwave Irradiation. Synthesis, 1994(03), 258-260. doi:10.1055/s-1994-25453 es_ES
dc.description.references Binev, I. G., Binev, Y. I., Stamboliyska, B. A., & Juchnovski, I. N. (1997). IR spectra and structure of benzylidenemalononitrile and its cyanide, methoxide and heptylamine adducts: experimental and ab initio studies. Journal of Molecular Structure, 435(3), 235-245. doi:10.1016/s0022-2860(97)00193-2 es_ES
dc.description.references Fringuelli, F., Brufola, G., Piermatti, O., & Pizzo, F. (1997). Efficient One-Pot Synthesis of 7-Azacoumarins by Knoevenagel Reaction Using Water as Reaction Medium. HETEROCYCLES, 45(9), 1715. doi:10.3987/com-97-7857 es_ES
dc.description.references Prajapati, D., Lekhok, K. C., Sandhu, J. S., & Ghosh, A. C. (1996). Lithium bromide as a new catalyst for carbon–carbon bond formation in the solid state. J. Chem. Soc., Perkin Trans. 1, (9), 959-960. doi:10.1039/p19960000959 es_ES
dc.description.references SARAVANAMURUGAN, S., PALANICHAMY, M., HARTMANN, M., & MURUGESAN, V. (2006). Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A: General, 298, 8-15. doi:10.1016/j.apcata.2005.09.014 es_ES
dc.description.references Kantevari, S., Bantu, R., & Nagarapu, L. (2007). HClO4–SiO2 and PPA–SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. Journal of Molecular Catalysis A: Chemical, 269(1-2), 53-57. doi:10.1016/j.molcata.2006.12.039 es_ES
dc.description.references Yadav, J. S., Reddy, B. V. S., Basak, A. K., Visali, B., Narsaiah, A. V., & Nagaiah, K. (2004). Phosphane-Catalyzed Knoevenagel Condensation: A Facile Synthesis ofα-Cyanoacrylates andα-Cyanoacrylonitriles. European Journal of Organic Chemistry, 2004(3), 546-551. doi:10.1002/ejoc.200300513 es_ES
dc.description.references Green, B., Crane, R. I., Khaidem, I. S., Leighton, R. S., Newaz, S. S., & Smyser, T. E. (1985). Synthesis of steroidal 16,17-fused unsaturated .delta.-lactones. The Journal of Organic Chemistry, 50(5), 640-644. doi:10.1021/jo00205a016 es_ES
dc.description.references Shanthan Rao, P., & Venkataratnam, R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Letters, 32(41), 5821-5822. doi:10.1016/s0040-4039(00)93564-0 es_ES
dc.description.references Kumbhare, R. M., & Sridhar, M. (2008). Magnesium fluoride catalyzed Knoevenagel reaction: An efficient synthesis of electrophilic alkenes. Catalysis Communications, 9(3), 403-405. doi:10.1016/j.catcom.2007.07.027 es_ES
dc.description.references Bartoli, G., Beleggia, R., Giuli, S., Giuliani, A., Marcantoni, E., Massaccesi, M., & Paoletti, M. (2006). The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Letters, 47(37), 6501-6504. doi:10.1016/j.tetlet.2006.07.031 es_ES
dc.description.references RAJASEKHARPULLABHOTLA, V., RAHMAN, A., & JONNALAGADDA, S. (2009). Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach. Catalysis Communications, 10(4), 365-369. doi:10.1016/j.catcom.2008.09.021 es_ES
dc.description.references Bose, D. S., & Narsaiah, A. V. (2001). An efficient benzyltriethylammonium chloride catalysed preparation of electrophilic alkenes: a practical synthesis of trimethoprim. Journal of Chemical Research, 2001(1), 36-38. doi:10.3184/030823401103168217 es_ES
dc.description.references Bennazha, J., Zahouilly, M., Boukhari, A., & Holt, E. M. (2003). Investigation of the basis of catalytic activity of solid state phosphate complexes in the Knoevenagel condensation. Journal of Molecular Catalysis A: Chemical, 202(1-2), 247-252. doi:10.1016/s1381-1169(03)00208-5 es_ES
dc.description.references Reddy, T. I., & Varma, R. S. (1997). Rare-earth (RE) exchanged NaY zeolite promoted knoevenagel condensation. Tetrahedron Letters, 38(10), 1721-1724. doi:10.1016/s0040-4039(97)00180-9 es_ES
dc.description.references Joshi, U. ., Joshi, P. ., Tamhankar, S. ., Joshi, V. ., Rode, C. ., & Shiralkar, V. . (2003). Effect of nonframework cations and crystallinity on the basicity of NaX zeolites. Applied Catalysis A: General, 239(1-2), 209-220. doi:10.1016/s0926-860x(02)00391-5 es_ES
dc.description.references Corma, A., Fornés, V., Martín-Aranda, R. M., García, H., & Primo, J. (1990). Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters. Applied Catalysis, 59(1), 237-248. doi:10.1016/s0166-9834(00)82201-0 es_ES
dc.description.references Corma, A., & Martín-Aranda, R. M. (1993). Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Applied Catalysis A: General, 105(2), 271-279. doi:10.1016/0926-860x(93)80252-l es_ES
dc.description.references Bigi, F., Chesini, L., Maggi, R., & Sartori, G. (1999). Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids. The Journal of Organic Chemistry, 64(3), 1033-1035. doi:10.1021/jo981794r es_ES
dc.description.references Kubota, Y., Nishizaki, Y., Ikeya, H., Saeki, M., Hida, T., Kawazu, S., … Sugi, Y. (2004). Organic–silicate hybrid catalysts based on various defined structures for Knoevenagel condensation. Microporous and Mesoporous Materials, 70(1-3), 135-149. doi:10.1016/j.micromeso.2004.02.017 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006 es_ES
dc.description.references Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g es_ES
dc.description.references Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208 es_ES
dc.description.references Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., … Yaghi, O. M. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523-527. doi:10.1038/nature02311 es_ES
dc.description.references Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Thimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139 es_ES
dc.description.references Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a es_ES
dc.description.references Roberts, J. M., Fini, B. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2012). Urea Metal–Organic Frameworks as Effective and Size-Selective Hydrogen-Bond Catalysts. Journal of the American Chemical Society, 134(7), 3334-3337. doi:10.1021/ja2108118 es_ES
dc.description.references Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d es_ES
dc.description.references Nguyen, L. T. L., Nguyen, T. T., Nguyen, K. D., & Phan, N. T. S. (2012). Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Applied Catalysis A: General, 425-426, 44-52. doi:10.1016/j.apcata.2012.02.045 es_ES
dc.description.references Opanasenko, M., Shamzhy, M., & Čejka, J. (2012). Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 5(4), 1024-1031. doi:10.1002/cctc.201200232 es_ES
dc.description.references Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998 es_ES
dc.description.references GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010 es_ES
dc.description.references Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058 es_ES
dc.description.references Van der Pol, A. J. H. P., & van Hooff, J. H. C. (1992). Parameters affecting the synthesis of titanium silicalite 1. Applied Catalysis A: General, 92(2), 93-111. doi:10.1016/0926-860x(92)80309-z es_ES
dc.description.references S. J. Gregg and K. S. W.Sing, Adsorption, Surface Area and Porosity, ed. S. J. Gregg and K. S. W. Sing, Academic Press Inc, London, 2nd edn, 1982, p. 303 es_ES
dc.description.references Ferwerda, R., van der Maas, J. H., & van Duijneveldt, F. B. (1996). Pyridine adsorption onto metal oxides: an ab initio study of model systems. Journal of Molecular Catalysis A: Chemical, 104(3), 319-328. doi:10.1016/1381-1169(95)00179-4 es_ES
dc.description.references Žilková, N., Bejblová, M., Gil, B., Zones, S. I., Burton, A. W., Chen, C.-Y., … Čejka, J. (2009). The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 266(1), 79-91. doi:10.1016/j.jcat.2009.05.017 es_ES


This item appears in the following Collection(s)

Show simple item record