- -

Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation

Mostrar el registro completo del ítem

Opanasenko, M.; Dhakshinamoorthy, A.; Shamzhy, M.; Nachtigall, P.; Horacek, M.; García Gómez, H.; Cejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology. 3(2):500-507. https://doi.org/10.1039/c2cy20586f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71579

Ficheros en el ítem

Metadatos del ítem

Título: Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation
Autor: Opanasenko, Maksym Dhakshinamoorthy, Amarajothi Shamzhy, Mariya Nachtigall, Petr Horacek, Michal García Gómez, Hermenegildo Cejka, Jiri
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] The catalytic behavior of metal-organic-frameworks (MOFs) CuBTC and FeBTC was investigated in Knoevenagel condensation of cyclohexane carbaldehyde and benzaldehyde with active methylene compounds and compared with ...[+]
Palabras clave: BASE CATALYSTS , METAL-ORGANIC FRAMEWORKS , SOLVENT-FREE CONDITIONS , ELECTROPHILIC ALKENES , SOLID-STATE , AB-INITIO , ALDEHYDES , WATER , ACIDS , SIZE
Derechos de uso: Cerrado
Fuente:
Catalysis Science and Technology. (issn: 2044-4753 )
DOI: 10.1039/c2cy20586f
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c2cy20586f
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/228862/EU/MOFs as Catalysts and Adsorbents: Discovery and Engineering of Materials for Industrial Applications/
info:eu-repo/grantAgreement/GACR//P106%2F12%2FG015/CZ/Intelligent design of nanoporous adsorbents and catalysts (IDENAC)/
Agradecimientos:
The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228862. P.N., M. H., and J.C. thank the Czech Grant Agency for ...[+]
Tipo: Artículo

References

L. F. Tietze and U.Beifuss, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 341

Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e [+]
L. F. Tietze and U.Beifuss, Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 2, p. 341

Freeman, F. (1980). Properties and reactions of ylidenemalononitriles. Chemical Reviews, 80(4), 329-350. doi:10.1021/cr60326a004

Tietze, L. F. (1996). Domino Reactions in Organic Synthesis. Chemical Reviews, 96(1), 115-136. doi:10.1021/cr950027e

Lai, S. M., Ng, C. P., Martin-Aranda, R., & Yeung, K. L. (2003). Knoevenagel condensation reaction in zeolite membrane microreactor. Microporous and Mesoporous Materials, 66(2-3), 239-252. doi:10.1016/j.micromeso.2003.09.014

Borah, H. N., Deb, M. L., Boruah, R. C., & Bhuyan, P. J. (2005). Stereoselective intramolecular hetero Diels–Alder reactions of 1-oxa-1,3-butadienes: synthesis of novel annelated pyrrolo[1,2-a]indoles. Tetrahedron Letters, 46(19), 3391-3393. doi:10.1016/j.tetlet.2005.03.091

Ayoubi, S. A.-E., Texier-Boullet, F., & Hamelin, J. (1994). Minute Synthesis of Electrophilic Alkenes under Microwave Irradiation. Synthesis, 1994(03), 258-260. doi:10.1055/s-1994-25453

Binev, I. G., Binev, Y. I., Stamboliyska, B. A., & Juchnovski, I. N. (1997). IR spectra and structure of benzylidenemalononitrile and its cyanide, methoxide and heptylamine adducts: experimental and ab initio studies. Journal of Molecular Structure, 435(3), 235-245. doi:10.1016/s0022-2860(97)00193-2

Fringuelli, F., Brufola, G., Piermatti, O., & Pizzo, F. (1997). Efficient One-Pot Synthesis of 7-Azacoumarins by Knoevenagel Reaction Using Water as Reaction Medium. HETEROCYCLES, 45(9), 1715. doi:10.3987/com-97-7857

Prajapati, D., Lekhok, K. C., Sandhu, J. S., & Ghosh, A. C. (1996). Lithium bromide as a new catalyst for carbon–carbon bond formation in the solid state. J. Chem. Soc., Perkin Trans. 1, (9), 959-960. doi:10.1039/p19960000959

SARAVANAMURUGAN, S., PALANICHAMY, M., HARTMANN, M., & MURUGESAN, V. (2006). Knoevenagel condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A: General, 298, 8-15. doi:10.1016/j.apcata.2005.09.014

Kantevari, S., Bantu, R., & Nagarapu, L. (2007). HClO4–SiO2 and PPA–SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. Journal of Molecular Catalysis A: Chemical, 269(1-2), 53-57. doi:10.1016/j.molcata.2006.12.039

Yadav, J. S., Reddy, B. V. S., Basak, A. K., Visali, B., Narsaiah, A. V., & Nagaiah, K. (2004). Phosphane-Catalyzed Knoevenagel Condensation: A Facile Synthesis ofα-Cyanoacrylates andα-Cyanoacrylonitriles. European Journal of Organic Chemistry, 2004(3), 546-551. doi:10.1002/ejoc.200300513

Green, B., Crane, R. I., Khaidem, I. S., Leighton, R. S., Newaz, S. S., & Smyser, T. E. (1985). Synthesis of steroidal 16,17-fused unsaturated .delta.-lactones. The Journal of Organic Chemistry, 50(5), 640-644. doi:10.1021/jo00205a016

Shanthan Rao, P., & Venkataratnam, R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Letters, 32(41), 5821-5822. doi:10.1016/s0040-4039(00)93564-0

Kumbhare, R. M., & Sridhar, M. (2008). Magnesium fluoride catalyzed Knoevenagel reaction: An efficient synthesis of electrophilic alkenes. Catalysis Communications, 9(3), 403-405. doi:10.1016/j.catcom.2007.07.027

Bartoli, G., Beleggia, R., Giuli, S., Giuliani, A., Marcantoni, E., Massaccesi, M., & Paoletti, M. (2006). The CeCl3·7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation. Tetrahedron Letters, 47(37), 6501-6504. doi:10.1016/j.tetlet.2006.07.031

RAJASEKHARPULLABHOTLA, V., RAHMAN, A., & JONNALAGADDA, S. (2009). Selective catalytic Knoevenagel condensation by Ni–SiO2 supported heterogeneous catalysts: An environmentally benign approach. Catalysis Communications, 10(4), 365-369. doi:10.1016/j.catcom.2008.09.021

Bose, D. S., & Narsaiah, A. V. (2001). An efficient benzyltriethylammonium chloride catalysed preparation of electrophilic alkenes: a practical synthesis of trimethoprim. Journal of Chemical Research, 2001(1), 36-38. doi:10.3184/030823401103168217

Bennazha, J., Zahouilly, M., Boukhari, A., & Holt, E. M. (2003). Investigation of the basis of catalytic activity of solid state phosphate complexes in the Knoevenagel condensation. Journal of Molecular Catalysis A: Chemical, 202(1-2), 247-252. doi:10.1016/s1381-1169(03)00208-5

Reddy, T. I., & Varma, R. S. (1997). Rare-earth (RE) exchanged NaY zeolite promoted knoevenagel condensation. Tetrahedron Letters, 38(10), 1721-1724. doi:10.1016/s0040-4039(97)00180-9

Joshi, U. ., Joshi, P. ., Tamhankar, S. ., Joshi, V. ., Rode, C. ., & Shiralkar, V. . (2003). Effect of nonframework cations and crystallinity on the basicity of NaX zeolites. Applied Catalysis A: General, 239(1-2), 209-220. doi:10.1016/s0926-860x(02)00391-5

Corma, A., Fornés, V., Martín-Aranda, R. M., García, H., & Primo, J. (1990). Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters. Applied Catalysis, 59(1), 237-248. doi:10.1016/s0166-9834(00)82201-0

Corma, A., & Martín-Aranda, R. M. (1993). Application of solid base catalysts in the preparation of prepolymers by condensation of ketones and malononitrile. Applied Catalysis A: General, 105(2), 271-279. doi:10.1016/0926-860x(93)80252-l

Bigi, F., Chesini, L., Maggi, R., & Sartori, G. (1999). Montmorillonite KSF as an Inorganic, Water Stable, and Reusable Catalyst for the Knoevenagel Synthesis of Coumarin-3-carboxylic Acids. The Journal of Organic Chemistry, 64(3), 1033-1035. doi:10.1021/jo981794r

Kubota, Y., Nishizaki, Y., Ikeya, H., Saeki, M., Hida, T., Kawazu, S., … Sugi, Y. (2004). Organic–silicate hybrid catalysts based on various defined structures for Knoevenagel condensation. Microporous and Mesoporous Materials, 70(1-3), 135-149. doi:10.1016/j.micromeso.2004.02.017

Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n

Corma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006

Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997

Dhakshinamoorthy, A., Alvaro, M., Corma, A., & Garcia, H. (2011). Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 40(24), 6344. doi:10.1039/c1dt10354g

Eddaoudi, M. (2002). Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 295(5554), 469-472. doi:10.1126/science.1067208

Chae, H. K., Siberio-Pérez, D. Y., Kim, J., Go, Y., Eddaoudi, M., … Yaghi, O. M. (2004). A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 427(6974), 523-527. doi:10.1038/nature02311

Pérez-Mayoral, E., & Čejka, J. (2010). [Cu3(BTC)2]: A Metal-Organic Framework Catalyst for the Friedländer Reaction. ChemCatChem, 3(1), 157-159. doi:10.1002/cctc.201000201

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Thimmaiah, M., Li, P., Regati, S., Chen, B., & Zhao, J. C.-G. (2012). Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3,5-dicarbonitriles using Zn(II) and Cd(II) metal–organic frameworks (MOFs) under solvent-free conditions. Tetrahedron Letters, 53(36), 4870-4872. doi:10.1016/j.tetlet.2012.06.139

Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P., & Čejka, J. (2012). Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 41(14), 4036. doi:10.1039/c2dt11978a

Roberts, J. M., Fini, B. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2012). Urea Metal–Organic Frameworks as Effective and Size-Selective Hydrogen-Bond Catalysts. Journal of the American Chemical Society, 134(7), 3334-3337. doi:10.1021/ja2108118

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Nguyen, L. T. L., Nguyen, T. T., Nguyen, K. D., & Phan, N. T. S. (2012). Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Applied Catalysis A: General, 425-426, 44-52. doi:10.1016/j.apcata.2012.02.045

Opanasenko, M., Shamzhy, M., & Čejka, J. (2012). Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 5(4), 1024-1031. doi:10.1002/cctc.201200232

Hwang, Y. K., Hong, D.-Y., Chang, J.-S., Jhung, S. H., Seo, Y.-K., Kim, J., … Férey, G. (2008). Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angewandte Chemie International Edition, 47(22), 4144-4148. doi:10.1002/anie.200705998

GASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010

Llabrés i Xamena, F. X., Cirujano, F. G., & Corma, A. (2012). An unexpected bifunctional acid base catalysis in IRMOF-3 for Knoevenagel condensation reactions. Microporous and Mesoporous Materials, 157, 112-117. doi:10.1016/j.micromeso.2011.12.058

Van der Pol, A. J. H. P., & van Hooff, J. H. C. (1992). Parameters affecting the synthesis of titanium silicalite 1. Applied Catalysis A: General, 92(2), 93-111. doi:10.1016/0926-860x(92)80309-z

S. J. Gregg and K. S. W.Sing, Adsorption, Surface Area and Porosity, ed. S. J. Gregg and K. S. W. Sing, Academic Press Inc, London, 2nd edn, 1982, p. 303

Ferwerda, R., van der Maas, J. H., & van Duijneveldt, F. B. (1996). Pyridine adsorption onto metal oxides: an ab initio study of model systems. Journal of Molecular Catalysis A: Chemical, 104(3), 319-328. doi:10.1016/1381-1169(95)00179-4

Žilková, N., Bejblová, M., Gil, B., Zones, S. I., Burton, A. W., Chen, C.-Y., … Čejka, J. (2009). The role of the zeolite channel architecture and acidity on the activity and selectivity in aromatic transformations: The effect of zeolite cages in SSZ-35 zeolite. Journal of Catalysis, 266(1), 79-91. doi:10.1016/j.jcat.2009.05.017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem