- -

A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities

Show full item record

Shi, L.; Tuzer, TU.; Fenollosa Esteve, R.; Meseguer Rico, FJ. (2012). A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities. Advanced Materials. 24(44):5934-5938. doi:10.1002/adma.201201987

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71601

Files in this item

Item Metadata

Title: A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities
Author: Shi, Lei Tuzer, Turan Umut Fenollosa Esteve, Roberto Meseguer Rico, Francisco Javier
UPV Unit: Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica
Issued date:
Abstract:
A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated ...[+]
Subjects: Metamaterials , Mie scattering , Optical magnetism , Photonics nanocavity , Silicon colloids , Building blockes , Cavity radius
Copyrigths: Cerrado
Source:
Advanced Materials. (issn: 0935-9648 )
DOI: 10.1002/adma.201201987
Publisher:
Wiley
Publisher version: http://dx.doi.org/10.1002/adma.201201987
Thanks:
The authors acknowledge financial support from the following projects FIS2009-07812, Consolider 2007-0046 Nanolight, and the PROMETEO/2010/043. L. S. thanks the financial support from the MINECO (Estancias de profesores e ...[+]
Type: Artículo

References

Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796

Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative-Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941-1952. doi:10.1002/adma.200600106

Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523-530. doi:10.1038/nphoton.2011.154 [+]
Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796

Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative-Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941-1952. doi:10.1002/adma.200600106

Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523-530. doi:10.1038/nphoton.2011.154

Linden, S. (2004). Magnetic Response of Metamaterials at 100 Terahertz. Science, 306(5700), 1351-1353. doi:10.1126/science.1105371

Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901

Merlin, R. (2009). Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. Proceedings of the National Academy of Sciences, 106(6), 1693-1698. doi:10.1073/pnas.0808478106

Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847

Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141

Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628

Enkrich, C., Pérez-Willard, F., Gerthsen, D., Zhou, J. F., Koschny, T., Soukoulis, C. M., … Linden, S. (2005). Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials. Advanced Materials, 17(21), 2547-2549. doi:10.1002/adma.200500804

Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at visible frequencies. Nature, 438(7066), 335-338. doi:10.1038/nature04242

Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., & Giessen, H. (2007). Plasmon Hybridization in Stacked Cut-Wire Metamaterials. Advanced Materials, 19(21), 3628-3632. doi:10.1002/adma.200700123

Linden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., … Wegener, M. (2006). Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1097-1105. doi:10.1109/jstqe.2006.880600

Husnik, M., Klein, M. W., Feth, N., König, M., Niegemann, J., Busch, K., … Wegener, M. (2008). Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photonics, 2(10), 614-617. doi:10.1038/nphoton.2008.181

Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501

Banzer, P., Peschel, U., Quabis, S., & Leuchs, G. (2010). On the experimental investigation of the electric and magnetic response of a single nano-structure. Optics Express, 18(10), 10905. doi:10.1364/oe.18.010905

Popa, B.-I., & Cummer, S. A. (2008). Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207401

Zhao, Q., Zhou, J., Zhang, F., & Lippens, D. (2009). Mie resonance-based dielectric metamaterials. Materials Today, 12(12), 60-69. doi:10.1016/s1369-7021(09)70318-9

O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317

Zheludev, N. I. (2010). The Road Ahead for Metamaterials. Science, 328(5978), 582-583. doi:10.1126/science.1186756

Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J. A., & Grzegorczyk, T. M. (2007). Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators. Physical Review Letters, 98(15). doi:10.1103/physrevlett.98.157403

Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401

Zhao, Q., Kang, L., Du, B., Zhao, H., Xie, Q., Huang, X., … Li, L. (2008). Experimental Demonstration of Isotropic Negative Permeability in a Three-Dimensional Dielectric Composite. Physical Review Letters, 101(2). doi:10.1103/physrevlett.101.027402

Ginn, J. C., Brener, I., Peters, D. W., Wendt, J. R., Stevens, J. O., Hines, P. F., … Sinclair, M. B. (2012). Realizing Optical Magnetism from Dielectric Metamaterials. Physical Review Letters, 108(9). doi:10.1103/physrevlett.108.097402

García-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L. S., López, C., Chantada, L., Scheffold, F., … Sáenz, J. J. (2011). Strong magnetic response of submicron Silicon particles in the infrared. Optics Express, 19(6), 4815. doi:10.1364/oe.19.004815

Shi, L., Xifré-Pérez, E., García de Abajo, F. J., & Meseguer, F. (2012). Looking through the mirror: Optical microcavity-mirror image photonic interaction. Optics Express, 20(10), 11247. doi:10.1364/oe.20.011247

Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589

Harris, J. T., Hueso, J. L., & Korgel, B. A. (2010). Hydrogenated Amorphous Silicon (a-Si:H) Colloids. Chemistry of Materials, 22(23), 6378-6383. doi:10.1021/cm102486w

Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., & Chichkov, B. N. (2012). Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Letters, 12(7), 3749-3755. doi:10.1021/nl301594s

Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J., & Luk’yanchuk, B. (2012). Magnetic light. Scientific Reports, 2(1). doi:10.1038/srep00492

Fenollosa, R., Ramiro-Manzano, F., Tymczenko, M., & Meseguer, F. (2010). Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. Journal of Materials Chemistry, 20(25), 5210. doi:10.1039/c0jm00079e

Bohren, C. F., & Huffman, D. R. (1998). Absorption and Scattering of Light by Small Particles. doi:10.1002/9783527618156

Christ, A., Martin, O. J. F., Ekinci, Y., Gippius, N. A., & Tikhodeev, S. G. (2008). Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Letters, 8(8), 2171-2175. doi:10.1021/nl0805559

Xiao, S., Chettiar, U. K., Kildishev, A. V., Drachev, V., Khoo, I. C., & Shalaev, V. M. (2009). Tunable magnetic response of metamaterials. Applied Physics Letters, 95(3), 033115. doi:10.1063/1.3182857

Yu, X., Shi, L., Han, D., Zi, J., & Braun, P. V. (2010). High Quality Factor Metallodielectric Hybrid Plasmonic-Photonic Crystals. Advanced Functional Materials, 20(12), 1910-1916. doi:10.1002/adfm.201000135

Vendik, I. B., Odit, M. A., & Kozlov, D. S. (2009). 3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions. Metamaterials, 3(3-4), 140-147. doi:10.1016/j.metmat.2009.09.001

Doicu, A., Wriedt, T., & Eremin, Y. A. (2006). Light Scattering by Systems of Particles. Springer Series in OPTICAL SCIENCES. doi:10.1007/978-3-540-33697-6

[-]

This item appears in the following Collection(s)

Show full item record