- -

A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shi, Lei es_ES
dc.contributor.author Tuzer, Turan Umut es_ES
dc.contributor.author Fenollosa Esteve, Roberto es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2016-10-11T09:31:47Z
dc.date.available 2016-10-11T09:31:47Z
dc.date.issued 2012-11-20
dc.identifier.issn 0935-9648
dc.identifier.uri http://hdl.handle.net/10251/71601
dc.description.abstract A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. es_ES
dc.description.sponsorship The authors acknowledge financial support from the following projects FIS2009-07812, Consolider 2007-0046 Nanolight, and the PROMETEO/2010/043. L. S. thanks the financial support from the MINECO (Estancias de profesores e investigadores extranjeros en centros espanoles) fellowship program. T. U. T. acknowledges the FPI fellowship the MINECO. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Advanced Materials es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metamaterials es_ES
dc.subject Mie scattering es_ES
dc.subject Optical magnetism es_ES
dc.subject Photonics nanocavity es_ES
dc.subject Silicon colloids es_ES
dc.subject Building blockes es_ES
dc.subject Cavity radius es_ES
dc.title A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/adma.201201987
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Shi, L.; Tuzer, TU.; Fenollosa Esteve, R.; Meseguer Rico, FJ. (2012). A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities. Advanced Materials. 24(44):5934-5938. https://doi.org/10.1002/adma.201201987 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/adma.201201987 es_ES
dc.description.upvformatpinicio 5934 es_ES
dc.description.upvformatpfin 5938 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 44 es_ES
dc.relation.senia 286815 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796 es_ES
dc.description.references Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative-Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941-1952. doi:10.1002/adma.200600106 es_ES
dc.description.references Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523-530. doi:10.1038/nphoton.2011.154 es_ES
dc.description.references Linden, S. (2004). Magnetic Response of Metamaterials at 100 Terahertz. Science, 306(5700), 1351-1353. doi:10.1126/science.1105371 es_ES
dc.description.references Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901 es_ES
dc.description.references Merlin, R. (2009). Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. Proceedings of the National Academy of Sciences, 106(6), 1693-1698. doi:10.1073/pnas.0808478106 es_ES
dc.description.references Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847 es_ES
dc.description.references Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141 es_ES
dc.description.references Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 es_ES
dc.description.references Enkrich, C., Pérez-Willard, F., Gerthsen, D., Zhou, J. F., Koschny, T., Soukoulis, C. M., … Linden, S. (2005). Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials. Advanced Materials, 17(21), 2547-2549. doi:10.1002/adma.200500804 es_ES
dc.description.references Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at visible frequencies. Nature, 438(7066), 335-338. doi:10.1038/nature04242 es_ES
dc.description.references Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., & Giessen, H. (2007). Plasmon Hybridization in Stacked Cut-Wire Metamaterials. Advanced Materials, 19(21), 3628-3632. doi:10.1002/adma.200700123 es_ES
dc.description.references Linden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., … Wegener, M. (2006). Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1097-1105. doi:10.1109/jstqe.2006.880600 es_ES
dc.description.references Husnik, M., Klein, M. W., Feth, N., König, M., Niegemann, J., Busch, K., … Wegener, M. (2008). Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photonics, 2(10), 614-617. doi:10.1038/nphoton.2008.181 es_ES
dc.description.references Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501 es_ES
dc.description.references Banzer, P., Peschel, U., Quabis, S., & Leuchs, G. (2010). On the experimental investigation of the electric and magnetic response of a single nano-structure. Optics Express, 18(10), 10905. doi:10.1364/oe.18.010905 es_ES
dc.description.references Popa, B.-I., & Cummer, S. A. (2008). Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207401 es_ES
dc.description.references Zhao, Q., Zhou, J., Zhang, F., & Lippens, D. (2009). Mie resonance-based dielectric metamaterials. Materials Today, 12(12), 60-69. doi:10.1016/s1369-7021(09)70318-9 es_ES
dc.description.references O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317 es_ES
dc.description.references Zheludev, N. I. (2010). The Road Ahead for Metamaterials. Science, 328(5978), 582-583. doi:10.1126/science.1186756 es_ES
dc.description.references Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J. A., & Grzegorczyk, T. M. (2007). Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators. Physical Review Letters, 98(15). doi:10.1103/physrevlett.98.157403 es_ES
dc.description.references Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401 es_ES
dc.description.references Zhao, Q., Kang, L., Du, B., Zhao, H., Xie, Q., Huang, X., … Li, L. (2008). Experimental Demonstration of Isotropic Negative Permeability in a Three-Dimensional Dielectric Composite. Physical Review Letters, 101(2). doi:10.1103/physrevlett.101.027402 es_ES
dc.description.references Ginn, J. C., Brener, I., Peters, D. W., Wendt, J. R., Stevens, J. O., Hines, P. F., … Sinclair, M. B. (2012). Realizing Optical Magnetism from Dielectric Metamaterials. Physical Review Letters, 108(9). doi:10.1103/physrevlett.108.097402 es_ES
dc.description.references García-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L. S., López, C., Chantada, L., Scheffold, F., … Sáenz, J. J. (2011). Strong magnetic response of submicron Silicon particles in the infrared. Optics Express, 19(6), 4815. doi:10.1364/oe.19.004815 es_ES
dc.description.references Shi, L., Xifré-Pérez, E., García de Abajo, F. J., & Meseguer, F. (2012). Looking through the mirror: Optical microcavity-mirror image photonic interaction. Optics Express, 20(10), 11247. doi:10.1364/oe.20.011247 es_ES
dc.description.references Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 es_ES
dc.description.references Harris, J. T., Hueso, J. L., & Korgel, B. A. (2010). Hydrogenated Amorphous Silicon (a-Si:H) Colloids. Chemistry of Materials, 22(23), 6378-6383. doi:10.1021/cm102486w es_ES
dc.description.references Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., & Chichkov, B. N. (2012). Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Letters, 12(7), 3749-3755. doi:10.1021/nl301594s es_ES
dc.description.references Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J., & Luk’yanchuk, B. (2012). Magnetic light. Scientific Reports, 2(1). doi:10.1038/srep00492 es_ES
dc.description.references Fenollosa, R., Ramiro-Manzano, F., Tymczenko, M., & Meseguer, F. (2010). Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. Journal of Materials Chemistry, 20(25), 5210. doi:10.1039/c0jm00079e es_ES
dc.description.references Bohren, C. F., & Huffman, D. R. (1998). Absorption and Scattering of Light by Small Particles. doi:10.1002/9783527618156 es_ES
dc.description.references Christ, A., Martin, O. J. F., Ekinci, Y., Gippius, N. A., & Tikhodeev, S. G. (2008). Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Letters, 8(8), 2171-2175. doi:10.1021/nl0805559 es_ES
dc.description.references Xiao, S., Chettiar, U. K., Kildishev, A. V., Drachev, V., Khoo, I. C., & Shalaev, V. M. (2009). Tunable magnetic response of metamaterials. Applied Physics Letters, 95(3), 033115. doi:10.1063/1.3182857 es_ES
dc.description.references Yu, X., Shi, L., Han, D., Zi, J., & Braun, P. V. (2010). High Quality Factor Metallodielectric Hybrid Plasmonic-Photonic Crystals. Advanced Functional Materials, 20(12), 1910-1916. doi:10.1002/adfm.201000135 es_ES
dc.description.references Vendik, I. B., Odit, M. A., & Kozlov, D. S. (2009). 3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions. Metamaterials, 3(3-4), 140-147. doi:10.1016/j.metmat.2009.09.001 es_ES
dc.description.references Doicu, A., Wriedt, T., & Eremin, Y. A. (2006). Light Scattering by Systems of Particles. Springer Series in OPTICAL SCIENCES. doi:10.1007/978-3-540-33697-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem