Mostrar el registro sencillo del ítem
dc.contributor.author | Shi, Lei | es_ES |
dc.contributor.author | Tuzer, Turan Umut | es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto | es_ES |
dc.contributor.author | Meseguer Rico, Francisco Javier | es_ES |
dc.date.accessioned | 2016-10-11T09:31:47Z | |
dc.date.available | 2016-10-11T09:31:47Z | |
dc.date.issued | 2012-11-20 | |
dc.identifier.issn | 0935-9648 | |
dc.identifier.uri | http://hdl.handle.net/10251/71601 | |
dc.description.abstract | A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | es_ES |
dc.description.sponsorship | The authors acknowledge financial support from the following projects FIS2009-07812, Consolider 2007-0046 Nanolight, and the PROMETEO/2010/043. L. S. thanks the financial support from the MINECO (Estancias de profesores e investigadores extranjeros en centros espanoles) fellowship program. T. U. T. acknowledges the FPI fellowship the MINECO. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Advanced Materials | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Metamaterials | es_ES |
dc.subject | Mie scattering | es_ES |
dc.subject | Optical magnetism | es_ES |
dc.subject | Photonics nanocavity | es_ES |
dc.subject | Silicon colloids | es_ES |
dc.subject | Building blockes | es_ES |
dc.subject | Cavity radius | es_ES |
dc.title | A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/adma.201201987 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica | es_ES |
dc.description.bibliographicCitation | Shi, L.; Tuzer, TU.; Fenollosa Esteve, R.; Meseguer Rico, FJ. (2012). A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: Silicon colloid nanocavities. Advanced Materials. 24(44):5934-5938. https://doi.org/10.1002/adma.201201987 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/adma.201201987 | es_ES |
dc.description.upvformatpinicio | 5934 | es_ES |
dc.description.upvformatpfin | 5938 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 24 | es_ES |
dc.description.issue | 44 | es_ES |
dc.relation.senia | 286815 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796 | es_ES |
dc.description.references | Soukoulis, C. M., Kafesaki, M., & Economou, E. N. (2006). Negative-Index Materials: New Frontiers in Optics. Advanced Materials, 18(15), 1941-1952. doi:10.1002/adma.200600106 | es_ES |
dc.description.references | Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523-530. doi:10.1038/nphoton.2011.154 | es_ES |
dc.description.references | Linden, S. (2004). Magnetic Response of Metamaterials at 100 Terahertz. Science, 306(5700), 1351-1353. doi:10.1126/science.1105371 | es_ES |
dc.description.references | Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901 | es_ES |
dc.description.references | Merlin, R. (2009). Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. Proceedings of the National Academy of Sciences, 106(6), 1693-1698. doi:10.1073/pnas.0808478106 | es_ES |
dc.description.references | Shelby, R. A. (2001). Experimental Verification of a Negative Index of Refraction. Science, 292(5514), 77-79. doi:10.1126/science.1058847 | es_ES |
dc.description.references | Zhang, X., & Liu, Z. (2008). Superlenses to overcome the diffraction limit. Nature Materials, 7(6), 435-441. doi:10.1038/nmat2141 | es_ES |
dc.description.references | Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. (2006). Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 314(5801), 977-980. doi:10.1126/science.1133628 | es_ES |
dc.description.references | Enkrich, C., Pérez-Willard, F., Gerthsen, D., Zhou, J. F., Koschny, T., Soukoulis, C. M., … Linden, S. (2005). Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials. Advanced Materials, 17(21), 2547-2549. doi:10.1002/adma.200500804 | es_ES |
dc.description.references | Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at visible frequencies. Nature, 438(7066), 335-338. doi:10.1038/nature04242 | es_ES |
dc.description.references | Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., & Giessen, H. (2007). Plasmon Hybridization in Stacked Cut-Wire Metamaterials. Advanced Materials, 19(21), 3628-3632. doi:10.1002/adma.200700123 | es_ES |
dc.description.references | Linden, S., Enkrich, C., Dolling, G., Klein, M. W., Zhou, J., Koschny, T., … Wegener, M. (2006). Photonic Metamaterials: Magnetism at Optical Frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12(6), 1097-1105. doi:10.1109/jstqe.2006.880600 | es_ES |
dc.description.references | Husnik, M., Klein, M. W., Feth, N., König, M., Niegemann, J., Busch, K., … Wegener, M. (2008). Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photonics, 2(10), 614-617. doi:10.1038/nphoton.2008.181 | es_ES |
dc.description.references | Boudarham, G., Feth, N., Myroshnychenko, V., Linden, S., García de Abajo, J., Wegener, M., & Kociak, M. (2010). Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 105(25). doi:10.1103/physrevlett.105.255501 | es_ES |
dc.description.references | Banzer, P., Peschel, U., Quabis, S., & Leuchs, G. (2010). On the experimental investigation of the electric and magnetic response of a single nano-structure. Optics Express, 18(10), 10905. doi:10.1364/oe.18.010905 | es_ES |
dc.description.references | Popa, B.-I., & Cummer, S. A. (2008). Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207401 | es_ES |
dc.description.references | Zhao, Q., Zhou, J., Zhang, F., & Lippens, D. (2009). Mie resonance-based dielectric metamaterials. Materials Today, 12(12), 60-69. doi:10.1016/s1369-7021(09)70318-9 | es_ES |
dc.description.references | O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317 | es_ES |
dc.description.references | Zheludev, N. I. (2010). The Road Ahead for Metamaterials. Science, 328(5978), 582-583. doi:10.1126/science.1186756 | es_ES |
dc.description.references | Peng, L., Ran, L., Chen, H., Zhang, H., Kong, J. A., & Grzegorczyk, T. M. (2007). Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators. Physical Review Letters, 98(15). doi:10.1103/physrevlett.98.157403 | es_ES |
dc.description.references | Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401 | es_ES |
dc.description.references | Zhao, Q., Kang, L., Du, B., Zhao, H., Xie, Q., Huang, X., … Li, L. (2008). Experimental Demonstration of Isotropic Negative Permeability in a Three-Dimensional Dielectric Composite. Physical Review Letters, 101(2). doi:10.1103/physrevlett.101.027402 | es_ES |
dc.description.references | Ginn, J. C., Brener, I., Peters, D. W., Wendt, J. R., Stevens, J. O., Hines, P. F., … Sinclair, M. B. (2012). Realizing Optical Magnetism from Dielectric Metamaterials. Physical Review Letters, 108(9). doi:10.1103/physrevlett.108.097402 | es_ES |
dc.description.references | García-Etxarri, A., Gómez-Medina, R., Froufe-Pérez, L. S., López, C., Chantada, L., Scheffold, F., … Sáenz, J. J. (2011). Strong magnetic response of submicron Silicon particles in the infrared. Optics Express, 19(6), 4815. doi:10.1364/oe.19.004815 | es_ES |
dc.description.references | Shi, L., Xifré-Pérez, E., García de Abajo, F. J., & Meseguer, F. (2012). Looking through the mirror: Optical microcavity-mirror image photonic interaction. Optics Express, 20(10), 11247. doi:10.1364/oe.20.011247 | es_ES |
dc.description.references | Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 | es_ES |
dc.description.references | Harris, J. T., Hueso, J. L., & Korgel, B. A. (2010). Hydrogenated Amorphous Silicon (a-Si:H) Colloids. Chemistry of Materials, 22(23), 6378-6383. doi:10.1021/cm102486w | es_ES |
dc.description.references | Evlyukhin, A. B., Novikov, S. M., Zywietz, U., Eriksen, R. L., Reinhardt, C., Bozhevolnyi, S. I., & Chichkov, B. N. (2012). Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Letters, 12(7), 3749-3755. doi:10.1021/nl301594s | es_ES |
dc.description.references | Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J., & Luk’yanchuk, B. (2012). Magnetic light. Scientific Reports, 2(1). doi:10.1038/srep00492 | es_ES |
dc.description.references | Fenollosa, R., Ramiro-Manzano, F., Tymczenko, M., & Meseguer, F. (2010). Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. Journal of Materials Chemistry, 20(25), 5210. doi:10.1039/c0jm00079e | es_ES |
dc.description.references | Bohren, C. F., & Huffman, D. R. (1998). Absorption and Scattering of Light by Small Particles. doi:10.1002/9783527618156 | es_ES |
dc.description.references | Christ, A., Martin, O. J. F., Ekinci, Y., Gippius, N. A., & Tikhodeev, S. G. (2008). Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Letters, 8(8), 2171-2175. doi:10.1021/nl0805559 | es_ES |
dc.description.references | Xiao, S., Chettiar, U. K., Kildishev, A. V., Drachev, V., Khoo, I. C., & Shalaev, V. M. (2009). Tunable magnetic response of metamaterials. Applied Physics Letters, 95(3), 033115. doi:10.1063/1.3182857 | es_ES |
dc.description.references | Yu, X., Shi, L., Han, D., Zi, J., & Braun, P. V. (2010). High Quality Factor Metallodielectric Hybrid Plasmonic-Photonic Crystals. Advanced Functional Materials, 20(12), 1910-1916. doi:10.1002/adfm.201000135 | es_ES |
dc.description.references | Vendik, I. B., Odit, M. A., & Kozlov, D. S. (2009). 3D isotropic metamaterial based on a regular array of resonant dielectric spherical inclusions. Metamaterials, 3(3-4), 140-147. doi:10.1016/j.metmat.2009.09.001 | es_ES |
dc.description.references | Doicu, A., Wriedt, T., & Eremin, Y. A. (2006). Light Scattering by Systems of Particles. Springer Series in OPTICAL SCIENCES. doi:10.1007/978-3-540-33697-6 | es_ES |