- -

3-Methylpiperidinium ionic liquids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3-Methylpiperidinium ionic liquids

Mostrar el registro completo del ítem

Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Nockemann, P.; Vaca Puga, A.; Seddon, KR.... (2015). 3-Methylpiperidinium ionic liquids. Physical Chemistry Chemical Physics. 17(16):10398-10416. doi:10.1039/C4CP05936K

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71621

Ficheros en el ítem

Metadatos del ítem

Título: 3-Methylpiperidinium ionic liquids
Autor: Belhocine, Tayeb Forsyth, Stewart A. Gunaratne, H. Q. Nimal Nieuwenhuyzen, Mark Nockemann, Peter Vaca Puga, Alberto Seddon, Kenneth R. Srinivasan, Geetha Whiston, Keith
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEKs (R) A amine. First, reaction with 1-bromoalkanes or ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/C4CP05936K
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c4cp05936k
Agradecimientos:
We would like to acknowledge the EPSRC NCS in Southampton for the single crystal X-ray diffraction data collection and INVISTA Intermediates for funding.
Tipo: Artículo

References

C. Mikolajczak , M.Kahn, K.White and R. T.Long, Lithium-ion Batteries Hazard and Use Assessment, Springer, New York, 2012

Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., … Bruce, P. G. (2012). Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51(40), 9994-10024. doi:10.1002/anie.201201429

Xing, H., Liao, C., Yang, Q., Veith, G. M., Guo, B., Sun, X.-G., … Dai, S. (2014). Ambient Lithium-SO2Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie International Edition, 53(8), 2099-2103. doi:10.1002/anie.201309539 [+]
C. Mikolajczak , M.Kahn, K.White and R. T.Long, Lithium-ion Batteries Hazard and Use Assessment, Springer, New York, 2012

Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., … Bruce, P. G. (2012). Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51(40), 9994-10024. doi:10.1002/anie.201201429

Xing, H., Liao, C., Yang, Q., Veith, G. M., Guo, B., Sun, X.-G., … Dai, S. (2014). Ambient Lithium-SO2Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie International Edition, 53(8), 2099-2103. doi:10.1002/anie.201309539

Lithium Ion Rechargeable Batteries, ed. K. Ozawa, Wiley-VCH, Weinheim, 2009

Advances in Lithium-Ion Batteries, ed. W. A. van Schalkwijk and B. Scrosati, Kluwer Academic/Plenum Publishers, New York, 2002

J. B. Goodenough , H.Abruna and M.Buchanan, Basic Research Needs For Electrical Energy Storage: Report of the Basic Energy Sciences Workshop For Electrical Energy Storage, 2007

Kar, M., Simons, T. J., Forsyth, M., & MacFarlane, D. R. (2014). Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys. Chem. Chem. Phys., 16(35), 18658-18674. doi:10.1039/c4cp02533d

Balaish, M., Kraytsberg, A., & Ein-Eli, Y. (2014). A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics, 16(7), 2801. doi:10.1039/c3cp54165g

Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, 2005

Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686

Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. doi:10.1039/b600519p

Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448

Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. Journal of Power Sources, 194(2), 601-609. doi:10.1016/j.jpowsour.2009.06.089

Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017

MacFarlane, D. R., & Seddon, K. R. (2007). Ionic Liquids—Progress on the Fundamental Issues. Australian Journal of Chemistry, 60(1), 3. doi:10.1071/ch06478

Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361

D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in Molten Salts and Ionic Liquids: Never the Twain?, ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010, pp. 367–388

Matsumoto, H., Sakaebe, H., & Tatsumi, K. (2005). Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 146(1-2), 45-50. doi:10.1016/j.jpowsour.2005.03.103

Rogers, E. I., Šljukić, B., Hardacre, C., & Compton, R. G. (2009). Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. Journal of Chemical & Engineering Data, 54(7), 2049-2053. doi:10.1021/je800898z

Sun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159p

Pohlmann, S., Olyschläger, T., Goodrich, P., Vicente, J. A., Jacquemin, J., & Balducci, A. (2015). Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. Electrochimica Acta, 153, 426-432. doi:10.1016/j.electacta.2014.11.189

MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145s

J. S. Wilkes and C. L.Hussey, Selection of Cations for Ambient Temperature Chloroaluminate Molten Salts Using MNDO Molecular Orbital Calculations, Frank J. Seiler Research Laboratory Technical Report 1982

P. C. Trulove and R. A.Mantz, in Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008, pp. 141–174

O’Mahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C., & Compton, R. G. (2008). Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 53(12), 2884-2891. doi:10.1021/je800678e

Jin, J., Li, H. H., Wei, J. P., Bian, X. K., Zhou, Z., & Yan, J. (2009). Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochemistry Communications, 11(7), 1500-1503. doi:10.1016/j.elecom.2009.05.040

Howlett, P. C., MacFarlane, D. R., & Hollenkamp, A. F. (2004). High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochemical and Solid-State Letters, 7(5), A97. doi:10.1149/1.1664051

Sakaebe, H., Matsumoto, H., & Tatsumi, K. (2007). Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 53(3), 1048-1054. doi:10.1016/j.electacta.2007.02.054

Abdallah, T., Lemordant, D., & Claude-Montigny, B. (2012). Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances? Journal of Power Sources, 201, 353-359. doi:10.1016/j.jpowsour.2011.10.115

Montanino, M., Moreno, M., Carewska, M., Maresca, G., Simonetti, E., Lo Presti, R., … Appetecchi, G. B. (2014). Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. Journal of Power Sources, 269, 608-615. doi:10.1016/j.jpowsour.2014.07.027

Lu, Y., Korf, K., Kambe, Y., Tu, Z., & Archer, L. A. (2013). Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie International Edition, 53(2), 488-492. doi:10.1002/anie.201307137

Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Puga, A. V., Seddon, K. R., … Whiston, K. (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chem., 13(1), 59-63. doi:10.1039/c0gc00534g

INVISTA™, DYTEK®, http://dytek.invista.com/

R. W. Alder , J. G. E.Phillips, L.Huang and X.Huang, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001

Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930

Coles, S. J., & Gale, P. A. (2012). Changing and challenging times for service crystallography. Chem. Sci., 3(3), 683-689. doi:10.1039/c2sc00955b

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726

Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica Section B Structural Science, 58(3), 380-388. doi:10.1107/s0108768102003890

Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895

Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Nockemann, P., Puga, A. V., … Whiston, K. (2011). Azepanium ionic liquids. Green Chemistry, 13(11), 3137. doi:10.1039/c1gc15189d

Pandey, G., Devi Reddy, G., & Kumaraswamy, G. (1994). Photoinduced electron transfer (PET) promoted cyclisations of 1-[N-alkyl-N-(trimethylsilyl)methyl]amines tethered to proximate olefin: mechanistic and synthetic perspectives. Tetrahedron, 50(27), 8185-8194. doi:10.1016/s0040-4020(01)85300-x

Pandey, G., Kumaraswamy, G., & Bhalerao, U. . (1989). Photoinduced set generation of α-amineradicals : A practical method for the synthesis of pyrrolidines and piperidines. Tetrahedron Letters, 30(44), 6059-6062. doi:10.1016/s0040-4039(01)93854-7

A. J. Carmichael , M.Deetlefs, M. J.Earle, U.Fröhlich and K. R.Seddon, in Ionic Liquids as Green Solvents: Progress and Prospects, ed. R. D. Rogers and K. R. Seddon, American Chemical Society, Washington, DC, 2003, pp. 14–31

Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S., Tachibana, K., & Katayama, S. (2011). New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 196(13), 5637-5644. doi:10.1016/j.jpowsour.2011.02.047

Shirota, H., Funston, A. M., Wishart, J. F., & Castner, E. W. (2005). Ultrafast dynamics of pyrrolidinium cation ionic liquids. The Journal of Chemical Physics, 122(18), 184512. doi:10.1063/1.1893797

Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., … Albini, A. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 194(1), 45-50. doi:10.1016/j.jpowsour.2008.12.013

Appetecchi, G. B., Scaccia, S., Tizzani, C., Alessandrini, F., & Passerini, S. (2006). Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of The Electrochemical Society, 153(9), A1685. doi:10.1149/1.2213420

Morishima, I., Yoshikawa, K., & Okada, K. (1976). Studies on the proton and carbon-13 contact shifts for .sigma.-bonded molecules. Stereospecific electron spin transmission in cyclic and bicyclic amines. Journal of the American Chemical Society, 98(13), 3787-3793. doi:10.1021/ja00429a009

Garbisch, E. W., & Griffith, M. G. (1968). Proton couplings in cyclohexane. Journal of the American Chemical Society, 90(23), 6543-6544. doi:10.1021/ja01025a069

R. K. Harris , Nuclear Magnetic Resonance Spectroscopy, Pitman Books Limited, London, 1983

E. L. Eliel , S. H.Wilen and M. P.Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York, 2001, pp. 436–491

Glorius, F., Spielkamp, N., Holle, S., Goddard, R., & Lehmann, C. W. (2004). Efficient Asymmetric Hydrogenation of Pyridines. Angewandte Chemie International Edition, 43(21), 2850-2852. doi:10.1002/anie.200453942

Matczak-Jon, E., Videnova-Adrabi?ska, V., Burzy?ska, A., Kafarski, P., & Lis, T. (2005). Solid-State Molecular Organization and Solution Behavior of Methane-1,1-Diphosphonic Acid Derivatives of Heterocyclic Amines: The Role of the Topochemical Ring Modification and the Intramolecular Hydrogen Bonds in Monosubstituted Piperid-1-ylmethane-1,1-diphosphonic Acids. Chemistry - A European Journal, 11(8), 2357-2372. doi:10.1002/chem.200400348

Xu, Q. (2012). 3-Methylpiperidinium bromide. Acta Crystallographica Section E Structure Reports Online, 68(6), o1654-o1654. doi:10.1107/s160053681201971x

Xu, Q. (2012). Bis(3-methylpiperidinium) naphthalene-1,5-disulfonate. Acta Crystallographica Section E Structure Reports Online, 68(6), o1687-o1687. doi:10.1107/s160053681202003x

Berg, R. W., Deetlefs, M., Seddon, K. R., Shim, I., & Thompson, J. M. (2005). Raman and ab Initio Studies of Simple and Binary 1-Alkyl-3-methylimidazolium Ionic Liquids. The Journal of Physical Chemistry B, 109(40), 19018-19025. doi:10.1021/jp050691r

Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001

Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083h

Henderson, M. A., Luo, J., Oliver, A., & McIndoe, J. S. (2011). The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry. Organometallics, 30(20), 5471-5479. doi:10.1021/om200717r

Dean, P. M., Pringle, J. M., & MacFarlane, D. R. (2008). 1-Methyl-1-propylpyrrolidinium chloride. Acta Crystallographica Section E Structure Reports Online, 64(3), o637-o637. doi:10.1107/s1600536808005229

Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H., & Nauer, G. (2008). Syntheses, crystal structures, and polymorphism of quaternary pyrrolidinium chlorides. CrystEngComm, 10(6), 748. doi:10.1039/b718917f

Dean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M., & MacFarlane, D. R. (2009). Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 62(4), 334. doi:10.1071/ch08456

Fei, Z., Zhao, D., Scopelliti, R., & Dyson, P. J. (2004). Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts. Organometallics, 23(7), 1622-1628. doi:10.1021/om034248j

Laus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., … Schottenberger, H. (2008). Synthesis and Crystal Structures of 1-Alkoxy-3-alkylimidazolium Salts Including Ionic Liquids, 1-Alkylimidazole 3-oxides and 1-Alkylimidazole Perhydrates. Zeitschrift für Naturforschung B, 63(4), 447-464. doi:10.1515/znb-2008-0411

Murray, S. M., O’Brien, R. A., Mattson, K. M., Ceccarelli, C., Sykora, R. E., West, K. N., & Davis, J. H. (2010). The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation. Angewandte Chemie International Edition, 49(15), 2755-2758. doi:10.1002/anie.200906169

Dupont, J., Suarez, P. A. Z., De Souza, R. F., Burrow, R. A., & Kintzinger, J.-P. (2000). C-H-π Interactions in 1-n-Butyl-3-methylimidazolium Tetraphenylborate Molten Salt: Solid and Solution Structures. Chemistry - A European Journal, 6(13), 2377-2381. doi:10.1002/1521-3765(20000703)6:13<2377::aid-chem2377>3.0.co;2-l

Stenzel, O., Raubenheimer, H. G., & Esterhuysen, C. (2002). Biphasic hydroformylation in new molten salts—analogies and differences to organic solvents. Journal of the Chemical Society, Dalton Transactions, (6), 1132. doi:10.1039/b107720a

Niehues, M., Kehr, G., Erker, G., Wibbeling, B., Fröhlich, R., Blacque, O., & Berke, H. (2002). Structural characterization of Group 4 transition metal halide bis-Arduengo carbene complexes MCl4L2: Journal of Organometallic Chemistry, 663(1-2), 192-203. doi:10.1016/s0022-328x(02)01731-x

Arduengo, A. J., Dias, H. V. R., Harlow, R. L., & Kline, M. (1992). Electronic stabilization of nucleophilic carbenes. Journal of the American Chemical Society, 114(14), 5530-5534. doi:10.1021/ja00040a007

S. Parsons , D.Sanders, A.Mount, A.Parsons and R.Johnstone, private communication to the CSD

G. J. Reiss , private communication to the CSD

Saha, S., Hayashi, S., Kobayashi, A., & Hamaguchi, H. (2003). Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chemistry Letters, 32(8), 740-741. doi:10.1246/cl.2003.740

Kärkkäinen, J., Asikkala, J., Laitinen, R. S., & Lajunen, M. K. (2004). Effect of Temperature on the Purity of Product in the Preparation of 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Zeitschrift für Naturforschung B, 59(7), 763-770. doi:10.1515/znb-2004-0704

Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., Johnson, S., Seddon, K. R., & Rogers, R. D. (2003). Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304543a/. Chemical Communications, (14), 1636. doi:10.1039/b304543a

Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., Lyssenko, K. A., Antipin, M. Y., & Urman, Y. G. (2004). Implementation of ionic liquids as activating media for polycondensation processes. Polymer, 45(15), 5031-5045. doi:10.1016/j.polymer.2004.05.025

Golovanov, D. G., Lyssenko, K. A., Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., & Antipin, M. Y. (2006). Crystal structure of 1,3-dialkyldiazolium bromides. Russian Chemical Bulletin, 55(11), 1989-1999. doi:10.1007/s11172-006-0541-3

Kawahata, M., Endo, T., Seki, H., Nishikawa, K., & Yamaguchi, K. (2009). Polymorphic Properties of Ionic Liquid of 1-Isopropyl-3-methylimidazolium Bromide. Chemistry Letters, 38(12), 1136-1137. doi:10.1246/cl.2009.1136

Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., & Hamaguchi, H. (2003). Rotational Isomerism and Structure of the 1-Butyl-3-methylimidazolium Cation in the Ionic Liquid State. Chemistry Letters, 32(10), 948-949. doi:10.1246/cl.2003.948

Elaiwi, A., Hitchcock, P. B., Seddon, K. R., Srinivasan, N., Tan, Y.-M., Welton, T., & Zora, J. A. (1995). Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society, Dalton Transactions, (21), 3467. doi:10.1039/dt9950003467

Wu, T.-Y., Su, S.-G., Lin, K.-F., Lin, Y.-C., Wang, H. P., Lin, M.-W., … Sun, I.-W. (2011). Voltammetric and physicochemical characterization of hydroxyl- and ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta, 56(21), 7278-7287. doi:10.1016/j.electacta.2011.06.051

Bazito, F. F. C., Kawano, Y., & Torresi, R. M. (2007). Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta, 52(23), 6427-6437. doi:10.1016/j.electacta.2007.04.064

McFarlane, D. ., Sun, J., Golding, J., Meakin, P., & Forsyth, M. (2000). High conductivity molten salts based on the imide ion. Electrochimica Acta, 45(8-9), 1271-1278. doi:10.1016/s0013-4686(99)00331-x

Tokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K., & Watanabe, M. (2006). How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. The Journal of Physical Chemistry B, 110(39), 19593-19600. doi:10.1021/jp064159v

Salminen, J., Papaiconomou, N., Kumar, R. A., Lee, J.-M., Kerr, J., Newman, J., & Prausnitz, J. M. (2007). Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria, 261(1-2), 421-426. doi:10.1016/j.fluid.2007.06.031

Furlani, M., Albinsson, I., Mellander, B.-E., Appetecchi, G. B., & Passerini, S. (2011). Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochimica Acta, 57, 220-227. doi:10.1016/j.electacta.2011.08.056

Jin, H., O’Hare, B., Dong, J., Arzhantsev, S., Baker, G. A., Wishart, J. F., … Maroncelli, M. (2008). Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations. The Journal of Physical Chemistry B, 112(1), 81-92. doi:10.1021/jp076462h

Heym, F., Etzold, B. J. M., Kern, C., & Jess, A. (2010). An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Physical Chemistry Chemical Physics, 12(38), 12089. doi:10.1039/c0cp00097c

CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 1999

Bulut, S., Eiden, P., Beichel, W., Slattery, J. M., Beyersdorff, T. F., Schubert, T. J. S., & Krossing, I. (2011). Temperature Dependence of the Viscosity and Conductivity of Mildly Functionalized and Non-Functionalized [Tf2N]− Ionic Liquids. ChemPhysChem, 12(12), 2296-2310. doi:10.1002/cphc.201100214

Chen, Z. J., Xue, T., & Lee, J.-M. (2012). What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Advances, 2(28), 10564. doi:10.1039/c2ra21772d

Tang, S., Baker, G. A., & Zhao, H. (2012). Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chemical Society Reviews, 41(10), 4030. doi:10.1039/c2cs15362a

Fannin, A. A., Floreani, D. A., King, L. A., Landers, J. S., Piersma, B. J., Stech, D. J., … Williams, J. L. (1984). Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. The Journal of Physical Chemistry, 88(12), 2614-2621. doi:10.1021/j150656a038

Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121

Monteiro, M. J., Camilo, F. F., Ribeiro, M. C. C., & Torresi, R. M. (2010). Ether-Bond-Containing Ionic Liquids and the Relevance of the Ether Bond Position to Transport Properties. The Journal of Physical Chemistry B, 114(39), 12488-12494. doi:10.1021/jp104419k

Xu, W., Cooper, E. I., & Angell, C. A. (2003). Ionic Liquids:  Ion Mobilities, Glass Temperatures, and Fragilities. The Journal of Physical Chemistry B, 107(25), 6170-6178. doi:10.1021/jp0275894

Angell, C. A., Byrne, N., & Belieres, J.-P. (2007). Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications. Accounts of Chemical Research, 40(11), 1228-1236. doi:10.1021/ar7001842

Fraser, K. J., Izgorodina, E. I., Forsyth, M., Scott, J. L., & MacFarlane, D. R. (2007). Liquids intermediate between «molecular» and «ionic» liquids: Liquid Ion Pairs? Chemical Communications, (37), 3817. doi:10.1039/b710014k

MacFarlane, D. R., Forsyth, M., Izgorodina, E. I., Abbott, A. P., Annat, G., & Fraser, K. (2009). On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics, 11(25), 4962. doi:10.1039/b900201d

Sakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1

A. J. Bard and L. R.Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2nd edn, 2001

Barrosse-Antle, L. E., Bond, A. M., Compton, R. G., O’Mahony, A. M., Rogers, E. I., & Silvester, D. S. (2010). Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents. Chemistry - An Asian Journal, 5(2), 202-230. doi:10.1002/asia.200900191

Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., & Kono, M. (2006). Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]−. Journal of Power Sources, 160(2), 1308-1313. doi:10.1016/j.jpowsour.2006.02.018

Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325x

MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053j

Howlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem