Mostrar el registro sencillo del ítem
dc.contributor.author | Belhocine, Tayeb | es_ES |
dc.contributor.author | Forsyth, Stewart A. | es_ES |
dc.contributor.author | Gunaratne, H. Q. Nimal | es_ES |
dc.contributor.author | Nieuwenhuyzen, Mark | es_ES |
dc.contributor.author | Nockemann, Peter | es_ES |
dc.contributor.author | Vaca Puga, Alberto | es_ES |
dc.contributor.author | Seddon, Kenneth R. | es_ES |
dc.contributor.author | Srinivasan, Geetha | es_ES |
dc.contributor.author | Whiston, Keith | es_ES |
dc.date.accessioned | 2016-10-11T11:56:11Z | |
dc.date.available | 2016-10-11T11:56:11Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1463-9076 | |
dc.identifier.uri | http://hdl.handle.net/10251/71621 | |
dc.description.abstract | [EN] A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEKs (R) A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rm beta pip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmm(beta)pip]X salts (X-= I-, [CF3CO2]-or [OTf](-); Tf = -SO2CF3), and [Rmm(beta)pip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2]-salts are liquids at room temperature. [Rmm(beta)pip]X (X-= I-, [CF3CO2]-or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 degrees C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)1- methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. | es_ES |
dc.description.sponsorship | We would like to acknowledge the EPSRC NCS in Southampton for the single crystal X-ray diffraction data collection and INVISTA Intermediates for funding. | |
dc.language | Español | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | 3-Methylpiperidinium ionic liquids | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/C4CP05936K | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Nockemann, P.; Vaca Puga, A.; Seddon, KR.... (2015). 3-Methylpiperidinium ionic liquids. Physical Chemistry Chemical Physics. 17(16):10398-10416. doi:10.1039/C4CP05936K | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c4cp05936k | es_ES |
dc.description.upvformatpinicio | 10398 | es_ES |
dc.description.upvformatpfin | 10416 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 16 | es_ES |
dc.relation.senia | 280628 | es_ES |
dc.identifier.pmid | 25669485 | |
dc.contributor.funder | INVISTA | |
dc.contributor.funder | Engineering and Physical Sciences Research Council, Reino Unido | |
dc.description.references | C. Mikolajczak , M.Kahn, K.White and R. T.Long, Lithium-ion Batteries Hazard and Use Assessment, Springer, New York, 2012 | es_ES |
dc.description.references | Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., … Bruce, P. G. (2012). Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51(40), 9994-10024. doi:10.1002/anie.201201429 | es_ES |
dc.description.references | Xing, H., Liao, C., Yang, Q., Veith, G. M., Guo, B., Sun, X.-G., … Dai, S. (2014). Ambient Lithium-SO2Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie International Edition, 53(8), 2099-2103. doi:10.1002/anie.201309539 | es_ES |
dc.description.references | Lithium Ion Rechargeable Batteries, ed. K. Ozawa, Wiley-VCH, Weinheim, 2009 | es_ES |
dc.description.references | Advances in Lithium-Ion Batteries, ed. W. A. van Schalkwijk and B. Scrosati, Kluwer Academic/Plenum Publishers, New York, 2002 | es_ES |
dc.description.references | J. B. Goodenough , H.Abruna and M.Buchanan, Basic Research Needs For Electrical Energy Storage: Report of the Basic Energy Sciences Workshop For Electrical Energy Storage, 2007 | es_ES |
dc.description.references | Kar, M., Simons, T. J., Forsyth, M., & MacFarlane, D. R. (2014). Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys. Chem. Chem. Phys., 16(35), 18658-18674. doi:10.1039/c4cp02533d | es_ES |
dc.description.references | Balaish, M., Kraytsberg, A., & Ein-Eli, Y. (2014). A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics, 16(7), 2801. doi:10.1039/c3cp54165g | es_ES |
dc.description.references | Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, 2005 | es_ES |
dc.description.references | Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686 | es_ES |
dc.description.references | Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. doi:10.1039/b600519p | es_ES |
dc.description.references | Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448 | es_ES |
dc.description.references | Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. Journal of Power Sources, 194(2), 601-609. doi:10.1016/j.jpowsour.2009.06.089 | es_ES |
dc.description.references | Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017 | es_ES |
dc.description.references | MacFarlane, D. R., & Seddon, K. R. (2007). Ionic Liquids—Progress on the Fundamental Issues. Australian Journal of Chemistry, 60(1), 3. doi:10.1071/ch06478 | es_ES |
dc.description.references | Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361 | es_ES |
dc.description.references | D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in Molten Salts and Ionic Liquids: Never the Twain?, ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010, pp. 367–388 | es_ES |
dc.description.references | Matsumoto, H., Sakaebe, H., & Tatsumi, K. (2005). Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 146(1-2), 45-50. doi:10.1016/j.jpowsour.2005.03.103 | es_ES |
dc.description.references | Rogers, E. I., Šljukić, B., Hardacre, C., & Compton, R. G. (2009). Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. Journal of Chemical & Engineering Data, 54(7), 2049-2053. doi:10.1021/je800898z | es_ES |
dc.description.references | Sun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159p | es_ES |
dc.description.references | Pohlmann, S., Olyschläger, T., Goodrich, P., Vicente, J. A., Jacquemin, J., & Balducci, A. (2015). Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. Electrochimica Acta, 153, 426-432. doi:10.1016/j.electacta.2014.11.189 | es_ES |
dc.description.references | MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145s | es_ES |
dc.description.references | J. S. Wilkes and C. L.Hussey, Selection of Cations for Ambient Temperature Chloroaluminate Molten Salts Using MNDO Molecular Orbital Calculations, Frank J. Seiler Research Laboratory Technical Report 1982 | es_ES |
dc.description.references | P. C. Trulove and R. A.Mantz, in Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008, pp. 141–174 | es_ES |
dc.description.references | O’Mahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C., & Compton, R. G. (2008). Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 53(12), 2884-2891. doi:10.1021/je800678e | es_ES |
dc.description.references | Jin, J., Li, H. H., Wei, J. P., Bian, X. K., Zhou, Z., & Yan, J. (2009). Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochemistry Communications, 11(7), 1500-1503. doi:10.1016/j.elecom.2009.05.040 | es_ES |
dc.description.references | Howlett, P. C., MacFarlane, D. R., & Hollenkamp, A. F. (2004). High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochemical and Solid-State Letters, 7(5), A97. doi:10.1149/1.1664051 | es_ES |
dc.description.references | Sakaebe, H., Matsumoto, H., & Tatsumi, K. (2007). Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 53(3), 1048-1054. doi:10.1016/j.electacta.2007.02.054 | es_ES |
dc.description.references | Abdallah, T., Lemordant, D., & Claude-Montigny, B. (2012). Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances? Journal of Power Sources, 201, 353-359. doi:10.1016/j.jpowsour.2011.10.115 | es_ES |
dc.description.references | Montanino, M., Moreno, M., Carewska, M., Maresca, G., Simonetti, E., Lo Presti, R., … Appetecchi, G. B. (2014). Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. Journal of Power Sources, 269, 608-615. doi:10.1016/j.jpowsour.2014.07.027 | es_ES |
dc.description.references | Lu, Y., Korf, K., Kambe, Y., Tu, Z., & Archer, L. A. (2013). Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie International Edition, 53(2), 488-492. doi:10.1002/anie.201307137 | es_ES |
dc.description.references | Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Puga, A. V., Seddon, K. R., … Whiston, K. (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chem., 13(1), 59-63. doi:10.1039/c0gc00534g | es_ES |
dc.description.references | INVISTA™, DYTEK®, http://dytek.invista.com/ | es_ES |
dc.description.references | R. W. Alder , J. G. E.Phillips, L.Huang and X.Huang, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001 | es_ES |
dc.description.references | Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930 | es_ES |
dc.description.references | Coles, S. J., & Gale, P. A. (2012). Changing and challenging times for service crystallography. Chem. Sci., 3(3), 683-689. doi:10.1039/c2sc00955b | es_ES |
dc.description.references | Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 | es_ES |
dc.description.references | Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 | es_ES |
dc.description.references | Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica Section B Structural Science, 58(3), 380-388. doi:10.1107/s0108768102003890 | es_ES |
dc.description.references | Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895 | es_ES |
dc.description.references | Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Nockemann, P., Puga, A. V., … Whiston, K. (2011). Azepanium ionic liquids. Green Chemistry, 13(11), 3137. doi:10.1039/c1gc15189d | es_ES |
dc.description.references | Pandey, G., Devi Reddy, G., & Kumaraswamy, G. (1994). Photoinduced electron transfer (PET) promoted cyclisations of 1-[N-alkyl-N-(trimethylsilyl)methyl]amines tethered to proximate olefin: mechanistic and synthetic perspectives. Tetrahedron, 50(27), 8185-8194. doi:10.1016/s0040-4020(01)85300-x | es_ES |
dc.description.references | Pandey, G., Kumaraswamy, G., & Bhalerao, U. . (1989). Photoinduced set generation of α-amineradicals : A practical method for the synthesis of pyrrolidines and piperidines. Tetrahedron Letters, 30(44), 6059-6062. doi:10.1016/s0040-4039(01)93854-7 | es_ES |
dc.description.references | A. J. Carmichael , M.Deetlefs, M. J.Earle, U.Fröhlich and K. R.Seddon, in Ionic Liquids as Green Solvents: Progress and Prospects, ed. R. D. Rogers and K. R. Seddon, American Chemical Society, Washington, DC, 2003, pp. 14–31 | es_ES |
dc.description.references | Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S., Tachibana, K., & Katayama, S. (2011). New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 196(13), 5637-5644. doi:10.1016/j.jpowsour.2011.02.047 | es_ES |
dc.description.references | Shirota, H., Funston, A. M., Wishart, J. F., & Castner, E. W. (2005). Ultrafast dynamics of pyrrolidinium cation ionic liquids. The Journal of Chemical Physics, 122(18), 184512. doi:10.1063/1.1893797 | es_ES |
dc.description.references | Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., … Albini, A. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 194(1), 45-50. doi:10.1016/j.jpowsour.2008.12.013 | es_ES |
dc.description.references | Appetecchi, G. B., Scaccia, S., Tizzani, C., Alessandrini, F., & Passerini, S. (2006). Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of The Electrochemical Society, 153(9), A1685. doi:10.1149/1.2213420 | es_ES |
dc.description.references | Morishima, I., Yoshikawa, K., & Okada, K. (1976). Studies on the proton and carbon-13 contact shifts for .sigma.-bonded molecules. Stereospecific electron spin transmission in cyclic and bicyclic amines. Journal of the American Chemical Society, 98(13), 3787-3793. doi:10.1021/ja00429a009 | es_ES |
dc.description.references | Garbisch, E. W., & Griffith, M. G. (1968). Proton couplings in cyclohexane. Journal of the American Chemical Society, 90(23), 6543-6544. doi:10.1021/ja01025a069 | es_ES |
dc.description.references | R. K. Harris , Nuclear Magnetic Resonance Spectroscopy, Pitman Books Limited, London, 1983 | es_ES |
dc.description.references | E. L. Eliel , S. H.Wilen and M. P.Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York, 2001, pp. 436–491 | es_ES |
dc.description.references | Glorius, F., Spielkamp, N., Holle, S., Goddard, R., & Lehmann, C. W. (2004). Efficient Asymmetric Hydrogenation of Pyridines. Angewandte Chemie International Edition, 43(21), 2850-2852. doi:10.1002/anie.200453942 | es_ES |
dc.description.references | Matczak-Jon, E., Videnova-Adrabi?ska, V., Burzy?ska, A., Kafarski, P., & Lis, T. (2005). Solid-State Molecular Organization and Solution Behavior of Methane-1,1-Diphosphonic Acid Derivatives of Heterocyclic Amines: The Role of the Topochemical Ring Modification and the Intramolecular Hydrogen Bonds in Monosubstituted Piperid-1-ylmethane-1,1-diphosphonic Acids. Chemistry - A European Journal, 11(8), 2357-2372. doi:10.1002/chem.200400348 | es_ES |
dc.description.references | Xu, Q. (2012). 3-Methylpiperidinium bromide. Acta Crystallographica Section E Structure Reports Online, 68(6), o1654-o1654. doi:10.1107/s160053681201971x | es_ES |
dc.description.references | Xu, Q. (2012). Bis(3-methylpiperidinium) naphthalene-1,5-disulfonate. Acta Crystallographica Section E Structure Reports Online, 68(6), o1687-o1687. doi:10.1107/s160053681202003x | es_ES |
dc.description.references | Berg, R. W., Deetlefs, M., Seddon, K. R., Shim, I., & Thompson, J. M. (2005). Raman and ab Initio Studies of Simple and Binary 1-Alkyl-3-methylimidazolium Ionic Liquids. The Journal of Physical Chemistry B, 109(40), 19018-19025. doi:10.1021/jp050691r | es_ES |
dc.description.references | Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001 | es_ES |
dc.description.references | Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083h | es_ES |
dc.description.references | Henderson, M. A., Luo, J., Oliver, A., & McIndoe, J. S. (2011). The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry. Organometallics, 30(20), 5471-5479. doi:10.1021/om200717r | es_ES |
dc.description.references | Dean, P. M., Pringle, J. M., & MacFarlane, D. R. (2008). 1-Methyl-1-propylpyrrolidinium chloride. Acta Crystallographica Section E Structure Reports Online, 64(3), o637-o637. doi:10.1107/s1600536808005229 | es_ES |
dc.description.references | Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H., & Nauer, G. (2008). Syntheses, crystal structures, and polymorphism of quaternary pyrrolidinium chlorides. CrystEngComm, 10(6), 748. doi:10.1039/b718917f | es_ES |
dc.description.references | Dean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M., & MacFarlane, D. R. (2009). Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 62(4), 334. doi:10.1071/ch08456 | es_ES |
dc.description.references | Fei, Z., Zhao, D., Scopelliti, R., & Dyson, P. J. (2004). Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts. Organometallics, 23(7), 1622-1628. doi:10.1021/om034248j | es_ES |
dc.description.references | Laus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., … Schottenberger, H. (2008). Synthesis and Crystal Structures of 1-Alkoxy-3-alkylimidazolium Salts Including Ionic Liquids, 1-Alkylimidazole 3-oxides and 1-Alkylimidazole Perhydrates. Zeitschrift für Naturforschung B, 63(4), 447-464. doi:10.1515/znb-2008-0411 | es_ES |
dc.description.references | Murray, S. M., O’Brien, R. A., Mattson, K. M., Ceccarelli, C., Sykora, R. E., West, K. N., & Davis, J. H. (2010). The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation. Angewandte Chemie International Edition, 49(15), 2755-2758. doi:10.1002/anie.200906169 | es_ES |
dc.description.references | Dupont, J., Suarez, P. A. Z., De Souza, R. F., Burrow, R. A., & Kintzinger, J.-P. (2000). C-H-π Interactions in 1-n-Butyl-3-methylimidazolium Tetraphenylborate Molten Salt: Solid and Solution Structures. Chemistry - A European Journal, 6(13), 2377-2381. doi:10.1002/1521-3765(20000703)6:13<2377::aid-chem2377>3.0.co;2-l | es_ES |
dc.description.references | Stenzel, O., Raubenheimer, H. G., & Esterhuysen, C. (2002). Biphasic hydroformylation in new molten salts—analogies and differences to organic solvents. Journal of the Chemical Society, Dalton Transactions, (6), 1132. doi:10.1039/b107720a | es_ES |
dc.description.references | Niehues, M., Kehr, G., Erker, G., Wibbeling, B., Fröhlich, R., Blacque, O., & Berke, H. (2002). Structural characterization of Group 4 transition metal halide bis-Arduengo carbene complexes MCl4L2: Journal of Organometallic Chemistry, 663(1-2), 192-203. doi:10.1016/s0022-328x(02)01731-x | es_ES |
dc.description.references | Arduengo, A. J., Dias, H. V. R., Harlow, R. L., & Kline, M. (1992). Electronic stabilization of nucleophilic carbenes. Journal of the American Chemical Society, 114(14), 5530-5534. doi:10.1021/ja00040a007 | es_ES |
dc.description.references | S. Parsons , D.Sanders, A.Mount, A.Parsons and R.Johnstone, private communication to the CSD | es_ES |
dc.description.references | G. J. Reiss , private communication to the CSD | es_ES |
dc.description.references | Saha, S., Hayashi, S., Kobayashi, A., & Hamaguchi, H. (2003). Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chemistry Letters, 32(8), 740-741. doi:10.1246/cl.2003.740 | es_ES |
dc.description.references | Kärkkäinen, J., Asikkala, J., Laitinen, R. S., & Lajunen, M. K. (2004). Effect of Temperature on the Purity of Product in the Preparation of 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Zeitschrift für Naturforschung B, 59(7), 763-770. doi:10.1515/znb-2004-0704 | es_ES |
dc.description.references | Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., Johnson, S., Seddon, K. R., & Rogers, R. D. (2003). Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304543a/. Chemical Communications, (14), 1636. doi:10.1039/b304543a | es_ES |
dc.description.references | Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., Lyssenko, K. A., Antipin, M. Y., & Urman, Y. G. (2004). Implementation of ionic liquids as activating media for polycondensation processes. Polymer, 45(15), 5031-5045. doi:10.1016/j.polymer.2004.05.025 | es_ES |
dc.description.references | Golovanov, D. G., Lyssenko, K. A., Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., & Antipin, M. Y. (2006). Crystal structure of 1,3-dialkyldiazolium bromides. Russian Chemical Bulletin, 55(11), 1989-1999. doi:10.1007/s11172-006-0541-3 | es_ES |
dc.description.references | Kawahata, M., Endo, T., Seki, H., Nishikawa, K., & Yamaguchi, K. (2009). Polymorphic Properties of Ionic Liquid of 1-Isopropyl-3-methylimidazolium Bromide. Chemistry Letters, 38(12), 1136-1137. doi:10.1246/cl.2009.1136 | es_ES |
dc.description.references | Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., & Hamaguchi, H. (2003). Rotational Isomerism and Structure of the 1-Butyl-3-methylimidazolium Cation in the Ionic Liquid State. Chemistry Letters, 32(10), 948-949. doi:10.1246/cl.2003.948 | es_ES |
dc.description.references | Elaiwi, A., Hitchcock, P. B., Seddon, K. R., Srinivasan, N., Tan, Y.-M., Welton, T., & Zora, J. A. (1995). Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society, Dalton Transactions, (21), 3467. doi:10.1039/dt9950003467 | es_ES |
dc.description.references | Wu, T.-Y., Su, S.-G., Lin, K.-F., Lin, Y.-C., Wang, H. P., Lin, M.-W., … Sun, I.-W. (2011). Voltammetric and physicochemical characterization of hydroxyl- and ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta, 56(21), 7278-7287. doi:10.1016/j.electacta.2011.06.051 | es_ES |
dc.description.references | Bazito, F. F. C., Kawano, Y., & Torresi, R. M. (2007). Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta, 52(23), 6427-6437. doi:10.1016/j.electacta.2007.04.064 | es_ES |
dc.description.references | McFarlane, D. ., Sun, J., Golding, J., Meakin, P., & Forsyth, M. (2000). High conductivity molten salts based on the imide ion. Electrochimica Acta, 45(8-9), 1271-1278. doi:10.1016/s0013-4686(99)00331-x | es_ES |
dc.description.references | Tokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K., & Watanabe, M. (2006). How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. The Journal of Physical Chemistry B, 110(39), 19593-19600. doi:10.1021/jp064159v | es_ES |
dc.description.references | Salminen, J., Papaiconomou, N., Kumar, R. A., Lee, J.-M., Kerr, J., Newman, J., & Prausnitz, J. M. (2007). Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria, 261(1-2), 421-426. doi:10.1016/j.fluid.2007.06.031 | es_ES |
dc.description.references | Furlani, M., Albinsson, I., Mellander, B.-E., Appetecchi, G. B., & Passerini, S. (2011). Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochimica Acta, 57, 220-227. doi:10.1016/j.electacta.2011.08.056 | es_ES |
dc.description.references | Jin, H., O’Hare, B., Dong, J., Arzhantsev, S., Baker, G. A., Wishart, J. F., … Maroncelli, M. (2008). Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations. The Journal of Physical Chemistry B, 112(1), 81-92. doi:10.1021/jp076462h | es_ES |
dc.description.references | Heym, F., Etzold, B. J. M., Kern, C., & Jess, A. (2010). An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Physical Chemistry Chemical Physics, 12(38), 12089. doi:10.1039/c0cp00097c | es_ES |
dc.description.references | CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 1999 | es_ES |
dc.description.references | Bulut, S., Eiden, P., Beichel, W., Slattery, J. M., Beyersdorff, T. F., Schubert, T. J. S., & Krossing, I. (2011). Temperature Dependence of the Viscosity and Conductivity of Mildly Functionalized and Non-Functionalized [Tf2N]− Ionic Liquids. ChemPhysChem, 12(12), 2296-2310. doi:10.1002/cphc.201100214 | es_ES |
dc.description.references | Chen, Z. J., Xue, T., & Lee, J.-M. (2012). What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Advances, 2(28), 10564. doi:10.1039/c2ra21772d | es_ES |
dc.description.references | Tang, S., Baker, G. A., & Zhao, H. (2012). Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chemical Society Reviews, 41(10), 4030. doi:10.1039/c2cs15362a | es_ES |
dc.description.references | Fannin, A. A., Floreani, D. A., King, L. A., Landers, J. S., Piersma, B. J., Stech, D. J., … Williams, J. L. (1984). Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. The Journal of Physical Chemistry, 88(12), 2614-2621. doi:10.1021/j150656a038 | es_ES |
dc.description.references | Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121 | es_ES |
dc.description.references | Monteiro, M. J., Camilo, F. F., Ribeiro, M. C. C., & Torresi, R. M. (2010). Ether-Bond-Containing Ionic Liquids and the Relevance of the Ether Bond Position to Transport Properties. The Journal of Physical Chemistry B, 114(39), 12488-12494. doi:10.1021/jp104419k | es_ES |
dc.description.references | Xu, W., Cooper, E. I., & Angell, C. A. (2003). Ionic Liquids: Ion Mobilities, Glass Temperatures, and Fragilities. The Journal of Physical Chemistry B, 107(25), 6170-6178. doi:10.1021/jp0275894 | es_ES |
dc.description.references | Angell, C. A., Byrne, N., & Belieres, J.-P. (2007). Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications. Accounts of Chemical Research, 40(11), 1228-1236. doi:10.1021/ar7001842 | es_ES |
dc.description.references | Fraser, K. J., Izgorodina, E. I., Forsyth, M., Scott, J. L., & MacFarlane, D. R. (2007). Liquids intermediate between «molecular» and «ionic» liquids: Liquid Ion Pairs? Chemical Communications, (37), 3817. doi:10.1039/b710014k | es_ES |
dc.description.references | MacFarlane, D. R., Forsyth, M., Izgorodina, E. I., Abbott, A. P., Annat, G., & Fraser, K. (2009). On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics, 11(25), 4962. doi:10.1039/b900201d | es_ES |
dc.description.references | Sakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1 | es_ES |
dc.description.references | A. J. Bard and L. R.Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2nd edn, 2001 | es_ES |
dc.description.references | Barrosse-Antle, L. E., Bond, A. M., Compton, R. G., O’Mahony, A. M., Rogers, E. I., & Silvester, D. S. (2010). Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents. Chemistry - An Asian Journal, 5(2), 202-230. doi:10.1002/asia.200900191 | es_ES |
dc.description.references | Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., & Kono, M. (2006). Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]−. Journal of Power Sources, 160(2), 1308-1313. doi:10.1016/j.jpowsour.2006.02.018 | es_ES |
dc.description.references | Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325x | es_ES |
dc.description.references | MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053j | es_ES |
dc.description.references | Howlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483 | es_ES |