- -

3-Methylpiperidinium ionic liquids

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

3-Methylpiperidinium ionic liquids

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Belhocine, Tayeb es_ES
dc.contributor.author Forsyth, Stewart A. es_ES
dc.contributor.author Gunaratne, H. Q. Nimal es_ES
dc.contributor.author Nieuwenhuyzen, Mark es_ES
dc.contributor.author Nockemann, Peter es_ES
dc.contributor.author Vaca Puga, Alberto es_ES
dc.contributor.author Seddon, Kenneth R. es_ES
dc.contributor.author Srinivasan, Geetha es_ES
dc.contributor.author Whiston, Keith es_ES
dc.date.accessioned 2016-10-11T11:56:11Z
dc.date.available 2016-10-11T11:56:11Z
dc.date.issued 2015
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10251/71621
dc.description.abstract [EN] A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEKs (R) A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rm beta pip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmm(beta)pip]X salts (X-= I-, [CF3CO2]-or [OTf](-); Tf = -SO2CF3), and [Rmm(beta)pip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2]-salts are liquids at room temperature. [Rmm(beta)pip]X (X-= I-, [CF3CO2]-or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 degrees C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)1- methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. es_ES
dc.description.sponsorship We would like to acknowledge the EPSRC NCS in Southampton for the single crystal X-ray diffraction data collection and INVISTA Intermediates for funding.
dc.language Español es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title 3-Methylpiperidinium ionic liquids es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C4CP05936K
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Belhocine, T.; Forsyth, SA.; Gunaratne, HQN.; Nieuwenhuyzen, M.; Nockemann, P.; Vaca Puga, A.; Seddon, KR.... (2015). 3-Methylpiperidinium ionic liquids. Physical Chemistry Chemical Physics. 17(16):10398-10416. doi:10.1039/C4CP05936K es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4cp05936k es_ES
dc.description.upvformatpinicio 10398 es_ES
dc.description.upvformatpfin 10416 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 16 es_ES
dc.relation.senia 280628 es_ES
dc.identifier.pmid 25669485
dc.contributor.funder INVISTA
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido
dc.description.references C. Mikolajczak , M.Kahn, K.White and R. T.Long, Lithium-ion Batteries Hazard and Use Assessment, Springer, New York, 2012 es_ES
dc.description.references Choi, N.-S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y.-K., Amine, K., … Bruce, P. G. (2012). Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angewandte Chemie International Edition, 51(40), 9994-10024. doi:10.1002/anie.201201429 es_ES
dc.description.references Xing, H., Liao, C., Yang, Q., Veith, G. M., Guo, B., Sun, X.-G., … Dai, S. (2014). Ambient Lithium-SO2Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie International Edition, 53(8), 2099-2103. doi:10.1002/anie.201309539 es_ES
dc.description.references Lithium Ion Rechargeable Batteries, ed. K. Ozawa, Wiley-VCH, Weinheim, 2009 es_ES
dc.description.references Advances in Lithium-Ion Batteries, ed. W. A. van Schalkwijk and B. Scrosati, Kluwer Academic/Plenum Publishers, New York, 2002 es_ES
dc.description.references J. B. Goodenough , H.Abruna and M.Buchanan, Basic Research Needs For Electrical Energy Storage: Report of the Basic Energy Sciences Workshop For Electrical Energy Storage, 2007 es_ES
dc.description.references Kar, M., Simons, T. J., Forsyth, M., & MacFarlane, D. R. (2014). Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Phys. Chem. Chem. Phys., 16(35), 18658-18674. doi:10.1039/c4cp02533d es_ES
dc.description.references Balaish, M., Kraytsberg, A., & Ein-Eli, Y. (2014). A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics, 16(7), 2801. doi:10.1039/c3cp54165g es_ES
dc.description.references Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, 2005 es_ES
dc.description.references Hapiot, P., & Lagrost, C. (2008). Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chemical Reviews, 108(7), 2238-2264. doi:10.1021/cr0680686 es_ES
dc.description.references Endres, F., & Zein El Abedin, S. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 8(18), 2101. doi:10.1039/b600519p es_ES
dc.description.references Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2009). Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 8(8), 621-629. doi:10.1038/nmat2448 es_ES
dc.description.references Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies. Journal of Power Sources, 194(2), 601-609. doi:10.1016/j.jpowsour.2009.06.089 es_ES
dc.description.references Buzzeo, M. C., Evans, R. G., & Compton, R. G. (2004). Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry—A Review. ChemPhysChem, 5(8), 1106-1120. doi:10.1002/cphc.200301017 es_ES
dc.description.references MacFarlane, D. R., & Seddon, K. R. (2007). Ionic Liquids—Progress on the Fundamental Issues. Australian Journal of Chemistry, 60(1), 3. doi:10.1071/ch06478 es_ES
dc.description.references Buzzeo, M. C., Hardacre, C., & Compton, R. G. (2006). Extended Electrochemical Windows Made Accessible by Room Temperature Ionic Liquid/Organic Solvent Electrolyte Systems. ChemPhysChem, 7(1), 176-180. doi:10.1002/cphc.200500361 es_ES
dc.description.references D. Teramoto , R.Yokoyama, H.Kagawa, T.Sada and N.Ogata, in Molten Salts and Ionic Liquids: Never the Twain?, ed. M. Gaune-Escard and K. R. Seddon, John Wiley & Sons, Inc., Hoboken, 2010, pp. 367–388 es_ES
dc.description.references Matsumoto, H., Sakaebe, H., & Tatsumi, K. (2005). Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 146(1-2), 45-50. doi:10.1016/j.jpowsour.2005.03.103 es_ES
dc.description.references Rogers, E. I., Šljukić, B., Hardacre, C., & Compton, R. G. (2009). Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes. Journal of Chemical & Engineering Data, 54(7), 2049-2053. doi:10.1021/je800898z es_ES
dc.description.references Sun, J., Forsyth, M., & MacFarlane, D. R. (1998). Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. The Journal of Physical Chemistry B, 102(44), 8858-8864. doi:10.1021/jp981159p es_ES
dc.description.references Pohlmann, S., Olyschläger, T., Goodrich, P., Vicente, J. A., Jacquemin, J., & Balducci, A. (2015). Mixtures of Azepanium Based Ionic Liquids and Propylene Carbonate as High Voltage Electrolytes for Supercapacitors. Electrochimica Acta, 153, 426-432. doi:10.1016/j.electacta.2014.11.189 es_ES
dc.description.references MacFarlane, D. R., Meakin, P., Sun, J., Amini, N., & Forsyth, M. (1999). Pyrrolidinium Imides:  A New Family of Molten Salts and Conductive Plastic Crystal Phases. The Journal of Physical Chemistry B, 103(20), 4164-4170. doi:10.1021/jp984145s es_ES
dc.description.references J. S. Wilkes and C. L.Hussey, Selection of Cations for Ambient Temperature Chloroaluminate Molten Salts Using MNDO Molecular Orbital Calculations, Frank J. Seiler Research Laboratory Technical Report 1982 es_ES
dc.description.references P. C. Trulove and R. A.Mantz, in Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008, pp. 141–174 es_ES
dc.description.references O’Mahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C., & Compton, R. G. (2008). Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. Journal of Chemical & Engineering Data, 53(12), 2884-2891. doi:10.1021/je800678e es_ES
dc.description.references Jin, J., Li, H. H., Wei, J. P., Bian, X. K., Zhou, Z., & Yan, J. (2009). Li/LiFePO4 batteries with room temperature ionic liquid as electrolyte. Electrochemistry Communications, 11(7), 1500-1503. doi:10.1016/j.elecom.2009.05.040 es_ES
dc.description.references Howlett, P. C., MacFarlane, D. R., & Hollenkamp, A. F. (2004). High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochemical and Solid-State Letters, 7(5), A97. doi:10.1149/1.1664051 es_ES
dc.description.references Sakaebe, H., Matsumoto, H., & Tatsumi, K. (2007). Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 53(3), 1048-1054. doi:10.1016/j.electacta.2007.02.054 es_ES
dc.description.references Abdallah, T., Lemordant, D., & Claude-Montigny, B. (2012). Are room temperature ionic liquids able to improve the safety of supercapacitors organic electrolytes without degrading the performances? Journal of Power Sources, 201, 353-359. doi:10.1016/j.jpowsour.2011.10.115 es_ES
dc.description.references Montanino, M., Moreno, M., Carewska, M., Maresca, G., Simonetti, E., Lo Presti, R., … Appetecchi, G. B. (2014). Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. Journal of Power Sources, 269, 608-615. doi:10.1016/j.jpowsour.2014.07.027 es_ES
dc.description.references Lu, Y., Korf, K., Kambe, Y., Tu, Z., & Archer, L. A. (2013). Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie International Edition, 53(2), 488-492. doi:10.1002/anie.201307137 es_ES
dc.description.references Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Puga, A. V., Seddon, K. R., … Whiston, K. (2011). New ionic liquids from azepane and 3-methylpiperidine exhibiting wide electrochemical windows. Green Chem., 13(1), 59-63. doi:10.1039/c0gc00534g es_ES
dc.description.references INVISTA™, DYTEK®, http://dytek.invista.com/ es_ES
dc.description.references R. W. Alder , J. G. E.Phillips, L.Huang and X.Huang, Encyclopedia of Reagents for Organic Synthesis, John Wiley & Sons, Ltd, 2001 es_ES
dc.description.references Zhou, Z.-B., Matsumoto, H., & Tatsumi, K. (2006). Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties. Chemistry - A European Journal, 12(8), 2196-2212. doi:10.1002/chem.200500930 es_ES
dc.description.references Coles, S. J., & Gale, P. A. (2012). Changing and challenging times for service crystallography. Chem. Sci., 3(3), 683-689. doi:10.1039/c2sc00955b es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., & Puschmann, H. (2009). OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42(2), 339-341. doi:10.1107/s0021889808042726 es_ES
dc.description.references Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallographica Section B Structural Science, 58(3), 380-388. doi:10.1107/s0108768102003890 es_ES
dc.description.references Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895 es_ES
dc.description.references Belhocine, T., Forsyth, S. A., Gunaratne, H. Q. N., Nieuwenhuyzen, M., Nockemann, P., Puga, A. V., … Whiston, K. (2011). Azepanium ionic liquids. Green Chemistry, 13(11), 3137. doi:10.1039/c1gc15189d es_ES
dc.description.references Pandey, G., Devi Reddy, G., & Kumaraswamy, G. (1994). Photoinduced electron transfer (PET) promoted cyclisations of 1-[N-alkyl-N-(trimethylsilyl)methyl]amines tethered to proximate olefin: mechanistic and synthetic perspectives. Tetrahedron, 50(27), 8185-8194. doi:10.1016/s0040-4020(01)85300-x es_ES
dc.description.references Pandey, G., Kumaraswamy, G., & Bhalerao, U. . (1989). Photoinduced set generation of α-amineradicals : A practical method for the synthesis of pyrrolidines and piperidines. Tetrahedron Letters, 30(44), 6059-6062. doi:10.1016/s0040-4039(01)93854-7 es_ES
dc.description.references A. J. Carmichael , M.Deetlefs, M. J.Earle, U.Fröhlich and K. R.Seddon, in Ionic Liquids as Green Solvents: Progress and Prospects, ed. R. D. Rogers and K. R. Seddon, American Chemical Society, Washington, DC, 2003, pp. 14–31 es_ES
dc.description.references Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S., Tachibana, K., & Katayama, S. (2011). New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. Journal of Power Sources, 196(13), 5637-5644. doi:10.1016/j.jpowsour.2011.02.047 es_ES
dc.description.references Shirota, H., Funston, A. M., Wishart, J. F., & Castner, E. W. (2005). Ultrafast dynamics of pyrrolidinium cation ionic liquids. The Journal of Chemical Physics, 122(18), 184512. doi:10.1063/1.1893797 es_ES
dc.description.references Ferrari, S., Quartarone, E., Mustarelli, P., Magistris, A., Protti, S., Lazzaroni, S., … Albini, A. (2009). A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries. Journal of Power Sources, 194(1), 45-50. doi:10.1016/j.jpowsour.2008.12.013 es_ES
dc.description.references Appetecchi, G. B., Scaccia, S., Tizzani, C., Alessandrini, F., & Passerini, S. (2006). Synthesis of Hydrophobic Ionic Liquids for Electrochemical Applications. Journal of The Electrochemical Society, 153(9), A1685. doi:10.1149/1.2213420 es_ES
dc.description.references Morishima, I., Yoshikawa, K., & Okada, K. (1976). Studies on the proton and carbon-13 contact shifts for .sigma.-bonded molecules. Stereospecific electron spin transmission in cyclic and bicyclic amines. Journal of the American Chemical Society, 98(13), 3787-3793. doi:10.1021/ja00429a009 es_ES
dc.description.references Garbisch, E. W., & Griffith, M. G. (1968). Proton couplings in cyclohexane. Journal of the American Chemical Society, 90(23), 6543-6544. doi:10.1021/ja01025a069 es_ES
dc.description.references R. K. Harris , Nuclear Magnetic Resonance Spectroscopy, Pitman Books Limited, London, 1983 es_ES
dc.description.references E. L. Eliel , S. H.Wilen and M. P.Doyle, Basic Organic Stereochemistry, Wiley-Interscience, New York, 2001, pp. 436–491 es_ES
dc.description.references Glorius, F., Spielkamp, N., Holle, S., Goddard, R., & Lehmann, C. W. (2004). Efficient Asymmetric Hydrogenation of Pyridines. Angewandte Chemie International Edition, 43(21), 2850-2852. doi:10.1002/anie.200453942 es_ES
dc.description.references Matczak-Jon, E., Videnova-Adrabi?ska, V., Burzy?ska, A., Kafarski, P., & Lis, T. (2005). Solid-State Molecular Organization and Solution Behavior of Methane-1,1-Diphosphonic Acid Derivatives of Heterocyclic Amines: The Role of the Topochemical Ring Modification and the Intramolecular Hydrogen Bonds in Monosubstituted Piperid-1-ylmethane-1,1-diphosphonic Acids. Chemistry - A European Journal, 11(8), 2357-2372. doi:10.1002/chem.200400348 es_ES
dc.description.references Xu, Q. (2012). 3-Methylpiperidinium bromide. Acta Crystallographica Section E Structure Reports Online, 68(6), o1654-o1654. doi:10.1107/s160053681201971x es_ES
dc.description.references Xu, Q. (2012). Bis(3-methylpiperidinium) naphthalene-1,5-disulfonate. Acta Crystallographica Section E Structure Reports Online, 68(6), o1687-o1687. doi:10.1107/s160053681202003x es_ES
dc.description.references Berg, R. W., Deetlefs, M., Seddon, K. R., Shim, I., & Thompson, J. M. (2005). Raman and ab Initio Studies of Simple and Binary 1-Alkyl-3-methylimidazolium Ionic Liquids. The Journal of Physical Chemistry B, 109(40), 19018-19025. doi:10.1021/jp050691r es_ES
dc.description.references Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001 es_ES
dc.description.references Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083h es_ES
dc.description.references Henderson, M. A., Luo, J., Oliver, A., & McIndoe, J. S. (2011). The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry. Organometallics, 30(20), 5471-5479. doi:10.1021/om200717r es_ES
dc.description.references Dean, P. M., Pringle, J. M., & MacFarlane, D. R. (2008). 1-Methyl-1-propylpyrrolidinium chloride. Acta Crystallographica Section E Structure Reports Online, 64(3), o637-o637. doi:10.1107/s1600536808005229 es_ES
dc.description.references Laus, G., Bentivoglio, G., Kahlenberg, V., Griesser, U. J., Schottenberger, H., & Nauer, G. (2008). Syntheses, crystal structures, and polymorphism of quaternary pyrrolidinium chlorides. CrystEngComm, 10(6), 748. doi:10.1039/b718917f es_ES
dc.description.references Dean, P. M., Clare, B. R., Armel, V., Pringle, J. M., Forsyth, C. M., Forsyth, M., & MacFarlane, D. R. (2009). Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 62(4), 334. doi:10.1071/ch08456 es_ES
dc.description.references Fei, Z., Zhao, D., Scopelliti, R., & Dyson, P. J. (2004). Organometallic Complexes Derived from Alkyne-Functionalized Imidazolium Salts. Organometallics, 23(7), 1622-1628. doi:10.1021/om034248j es_ES
dc.description.references Laus, G., Schwärzler, A., Bentivoglio, G., Hummel, M., Kahlenberg, V., Wurst, K., … Schottenberger, H. (2008). Synthesis and Crystal Structures of 1-Alkoxy-3-alkylimidazolium Salts Including Ionic Liquids, 1-Alkylimidazole 3-oxides and 1-Alkylimidazole Perhydrates. Zeitschrift für Naturforschung B, 63(4), 447-464. doi:10.1515/znb-2008-0411 es_ES
dc.description.references Murray, S. M., O’Brien, R. A., Mattson, K. M., Ceccarelli, C., Sykora, R. E., West, K. N., & Davis, J. H. (2010). The Fluid-Mosaic Model, Homeoviscous Adaptation, and Ionic Liquids: Dramatic Lowering of the Melting Point by Side-Chain Unsaturation. Angewandte Chemie International Edition, 49(15), 2755-2758. doi:10.1002/anie.200906169 es_ES
dc.description.references Dupont, J., Suarez, P. A. Z., De Souza, R. F., Burrow, R. A., & Kintzinger, J.-P. (2000). C-H-π Interactions in 1-n-Butyl-3-methylimidazolium Tetraphenylborate Molten Salt: Solid and Solution Structures. Chemistry - A European Journal, 6(13), 2377-2381. doi:10.1002/1521-3765(20000703)6:13<2377::aid-chem2377>3.0.co;2-l es_ES
dc.description.references Stenzel, O., Raubenheimer, H. G., & Esterhuysen, C. (2002). Biphasic hydroformylation in new molten salts—analogies and differences to organic solvents. Journal of the Chemical Society, Dalton Transactions, (6), 1132. doi:10.1039/b107720a es_ES
dc.description.references Niehues, M., Kehr, G., Erker, G., Wibbeling, B., Fröhlich, R., Blacque, O., & Berke, H. (2002). Structural characterization of Group 4 transition metal halide bis-Arduengo carbene complexes MCl4L2: Journal of Organometallic Chemistry, 663(1-2), 192-203. doi:10.1016/s0022-328x(02)01731-x es_ES
dc.description.references Arduengo, A. J., Dias, H. V. R., Harlow, R. L., & Kline, M. (1992). Electronic stabilization of nucleophilic carbenes. Journal of the American Chemical Society, 114(14), 5530-5534. doi:10.1021/ja00040a007 es_ES
dc.description.references S. Parsons , D.Sanders, A.Mount, A.Parsons and R.Johnstone, private communication to the CSD es_ES
dc.description.references G. J. Reiss , private communication to the CSD es_ES
dc.description.references Saha, S., Hayashi, S., Kobayashi, A., & Hamaguchi, H. (2003). Crystal Structure of 1-Butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chemistry Letters, 32(8), 740-741. doi:10.1246/cl.2003.740 es_ES
dc.description.references Kärkkäinen, J., Asikkala, J., Laitinen, R. S., & Lajunen, M. K. (2004). Effect of Temperature on the Purity of Product in the Preparation of 1-Butyl-3-methylimidazolium-Based Ionic Liquids. Zeitschrift für Naturforschung B, 59(7), 763-770. doi:10.1515/znb-2004-0704 es_ES
dc.description.references Holbrey, J. D., Reichert, W. M., Nieuwenhuyzen, M., Johnson, S., Seddon, K. R., & Rogers, R. D. (2003). Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304543a/. Chemical Communications, (14), 1636. doi:10.1039/b304543a es_ES
dc.description.references Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., Lyssenko, K. A., Antipin, M. Y., & Urman, Y. G. (2004). Implementation of ionic liquids as activating media for polycondensation processes. Polymer, 45(15), 5031-5045. doi:10.1016/j.polymer.2004.05.025 es_ES
dc.description.references Golovanov, D. G., Lyssenko, K. A., Vygodskii, Y. S., Lozinskaya, E. I., Shaplov, A. S., & Antipin, M. Y. (2006). Crystal structure of 1,3-dialkyldiazolium bromides. Russian Chemical Bulletin, 55(11), 1989-1999. doi:10.1007/s11172-006-0541-3 es_ES
dc.description.references Kawahata, M., Endo, T., Seki, H., Nishikawa, K., & Yamaguchi, K. (2009). Polymorphic Properties of Ionic Liquid of 1-Isopropyl-3-methylimidazolium Bromide. Chemistry Letters, 38(12), 1136-1137. doi:10.1246/cl.2009.1136 es_ES
dc.description.references Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., & Hamaguchi, H. (2003). Rotational Isomerism and Structure of the 1-Butyl-3-methylimidazolium Cation in the Ionic Liquid State. Chemistry Letters, 32(10), 948-949. doi:10.1246/cl.2003.948 es_ES
dc.description.references Elaiwi, A., Hitchcock, P. B., Seddon, K. R., Srinivasan, N., Tan, Y.-M., Welton, T., & Zora, J. A. (1995). Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids. Journal of the Chemical Society, Dalton Transactions, (21), 3467. doi:10.1039/dt9950003467 es_ES
dc.description.references Wu, T.-Y., Su, S.-G., Lin, K.-F., Lin, Y.-C., Wang, H. P., Lin, M.-W., … Sun, I.-W. (2011). Voltammetric and physicochemical characterization of hydroxyl- and ether-functionalized onium bis(trifluoromethanesulfonyl)imide ionic liquids. Electrochimica Acta, 56(21), 7278-7287. doi:10.1016/j.electacta.2011.06.051 es_ES
dc.description.references Bazito, F. F. C., Kawano, Y., & Torresi, R. M. (2007). Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta, 52(23), 6427-6437. doi:10.1016/j.electacta.2007.04.064 es_ES
dc.description.references McFarlane, D. ., Sun, J., Golding, J., Meakin, P., & Forsyth, M. (2000). High conductivity molten salts based on the imide ion. Electrochimica Acta, 45(8-9), 1271-1278. doi:10.1016/s0013-4686(99)00331-x es_ES
dc.description.references Tokuda, H., Tsuzuki, S., Susan, M. A. B. H., Hayamizu, K., & Watanabe, M. (2006). How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. The Journal of Physical Chemistry B, 110(39), 19593-19600. doi:10.1021/jp064159v es_ES
dc.description.references Salminen, J., Papaiconomou, N., Kumar, R. A., Lee, J.-M., Kerr, J., Newman, J., & Prausnitz, J. M. (2007). Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria, 261(1-2), 421-426. doi:10.1016/j.fluid.2007.06.031 es_ES
dc.description.references Furlani, M., Albinsson, I., Mellander, B.-E., Appetecchi, G. B., & Passerini, S. (2011). Annealing protocols for pyrrolidinium bis(trifluoromethylsulfonyl)imide type ionic liquids. Electrochimica Acta, 57, 220-227. doi:10.1016/j.electacta.2011.08.056 es_ES
dc.description.references Jin, H., O’Hare, B., Dong, J., Arzhantsev, S., Baker, G. A., Wishart, J. F., … Maroncelli, M. (2008). Physical Properties of Ionic Liquids Consisting of the 1-Butyl-3-Methylimidazolium Cation with Various Anions and the Bis(trifluoromethylsulfonyl)imide Anion with Various Cations. The Journal of Physical Chemistry B, 112(1), 81-92. doi:10.1021/jp076462h es_ES
dc.description.references Heym, F., Etzold, B. J. M., Kern, C., & Jess, A. (2010). An improved method to measure the rate of vaporisation and thermal decomposition of high boiling organic and ionic liquids by thermogravimetrical analysis. Physical Chemistry Chemical Physics, 12(38), 12089. doi:10.1039/c0cp00097c es_ES
dc.description.references CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, 1999 es_ES
dc.description.references Bulut, S., Eiden, P., Beichel, W., Slattery, J. M., Beyersdorff, T. F., Schubert, T. J. S., & Krossing, I. (2011). Temperature Dependence of the Viscosity and Conductivity of Mildly Functionalized and Non-Functionalized [Tf2N]− Ionic Liquids. ChemPhysChem, 12(12), 2296-2310. doi:10.1002/cphc.201100214 es_ES
dc.description.references Chen, Z. J., Xue, T., & Lee, J.-M. (2012). What causes the low viscosity of ether-functionalized ionic liquids? Its dependence on the increase of free volume. RSC Advances, 2(28), 10564. doi:10.1039/c2ra21772d es_ES
dc.description.references Tang, S., Baker, G. A., & Zhao, H. (2012). Ether- and alcohol-functionalized task-specific ionic liquids: attractive properties and applications. Chemical Society Reviews, 41(10), 4030. doi:10.1039/c2cs15362a es_ES
dc.description.references Fannin, A. A., Floreani, D. A., King, L. A., Landers, J. S., Piersma, B. J., Stech, D. J., … Williams, J. L. (1984). Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 2. Phase transitions, densities, electrical conductivities, and viscosities. The Journal of Physical Chemistry, 88(12), 2614-2621. doi:10.1021/j150656a038 es_ES
dc.description.references Tammann, G., & Hesse, W. (1926). Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, 156(1), 245-257. doi:10.1002/zaac.19261560121 es_ES
dc.description.references Monteiro, M. J., Camilo, F. F., Ribeiro, M. C. C., & Torresi, R. M. (2010). Ether-Bond-Containing Ionic Liquids and the Relevance of the Ether Bond Position to Transport Properties. The Journal of Physical Chemistry B, 114(39), 12488-12494. doi:10.1021/jp104419k es_ES
dc.description.references Xu, W., Cooper, E. I., & Angell, C. A. (2003). Ionic Liquids:  Ion Mobilities, Glass Temperatures, and Fragilities. The Journal of Physical Chemistry B, 107(25), 6170-6178. doi:10.1021/jp0275894 es_ES
dc.description.references Angell, C. A., Byrne, N., & Belieres, J.-P. (2007). Parallel Developments in Aprotic and Protic Ionic Liquids: Physical Chemistry and Applications. Accounts of Chemical Research, 40(11), 1228-1236. doi:10.1021/ar7001842 es_ES
dc.description.references Fraser, K. J., Izgorodina, E. I., Forsyth, M., Scott, J. L., & MacFarlane, D. R. (2007). Liquids intermediate between «molecular» and «ionic» liquids: Liquid Ion Pairs? Chemical Communications, (37), 3817. doi:10.1039/b710014k es_ES
dc.description.references MacFarlane, D. R., Forsyth, M., Izgorodina, E. I., Abbott, A. P., Annat, G., & Fraser, K. (2009). On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics, 11(25), 4962. doi:10.1039/b900201d es_ES
dc.description.references Sakaebe, H., & Matsumoto, H. (2003). N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 5(7), 594-598. doi:10.1016/s1388-2481(03)00137-1 es_ES
dc.description.references A. J. Bard and L. R.Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 2nd edn, 2001 es_ES
dc.description.references Barrosse-Antle, L. E., Bond, A. M., Compton, R. G., O’Mahony, A. M., Rogers, E. I., & Silvester, D. S. (2010). Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents. Chemistry - An Asian Journal, 5(2), 202-230. doi:10.1002/asia.200900191 es_ES
dc.description.references Matsumoto, H., Sakaebe, H., Tatsumi, K., Kikuta, M., Ishiko, E., & Kono, M. (2006). Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]−. Journal of Power Sources, 160(2), 1308-1313. doi:10.1016/j.jpowsour.2006.02.018 es_ES
dc.description.references Bonhôte, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Grätzel, M. (1996). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts†. Inorganic Chemistry, 35(5), 1168-1178. doi:10.1021/ic951325x es_ES
dc.description.references MacFarlane, D. R., Pringle, J. M., Howlett, P. C., & Forsyth, M. (2010). Ionic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 12(8), 1659. doi:10.1039/b923053j es_ES
dc.description.references Howlett, P. C., Izgorodina, E. I., Forsyth, M., & MacFarlane, D. R. (2006). Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift für Physikalische Chemie, 220(10), 1483-1498. doi:10.1524/zpch.2006.220.10.1483 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem