- -

Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures

Mostrar el registro completo del ítem

Anderson, K.; Atkins, MP.; Estager, J.; Kuah, Y.; Ng, S.; Oliferenko, AA.; Plechkova, NV.... (2015). Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures. Green Chemistry. 17(8):4340-4354. https://doi.org/10.1039/c5gc00720h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71625

Ficheros en el ítem

Metadatos del ítem

Título: Carbon dioxide uptake from natural gas by binary ionic liquid water mixtures
Autor: Anderson, Kris Atkins, Martin P Estager, Julien Kuah, Yongcheun Ng, Shieling Oliferenko, Alexander A. Plechkova, Natalia V. Vaca Puga, Alberto Seddon, Kenneth R. Wassell, David F.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Carbon dioxide solubility in a set of carboxylate ionic liquids formulated with stoicheiometric amounts of water is found to be significantly higher than for other ionic liquids previously reported. This is due to ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c5gc00720h
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c5gc00720h
Agradecimientos:
The authors would like to acknowledge PETRONAS for financial support of this research, and Cytec (especially Dr Al Robertson) for supplying some of the phosphonium ionic liquids used.
Tipo: Artículo

References

Cenovus, http://www.cenovus.com/operations/technology/co2-enhanced-oil-recovery.html

V. Alvarado and E.Manrique, Enhanced Oil Recovery: Field Planning and Development Strategies, Gulf Professional Publishing, Amsterdam, 2010

British Petroleum , In Salah Gas, http://www.insalahco2.com/index.php?option=com_content&view=frontpage&Itemid=1&lang=en [+]
Cenovus, http://www.cenovus.com/operations/technology/co2-enhanced-oil-recovery.html

V. Alvarado and E.Manrique, Enhanced Oil Recovery: Field Planning and Development Strategies, Gulf Professional Publishing, Amsterdam, 2010

British Petroleum , In Salah Gas, http://www.insalahco2.com/index.php?option=com_content&view=frontpage&Itemid=1&lang=en

N. Stern , The Economics of Climate Change: The Stern Review, Cambridge University Press, Cambridge, 2007

Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. Energies, 3(9), 1529-1575. doi:10.3390/en3091529

S. Rackley , Carbon Capture and Storage, Elsevier Science, Oxford, 2009

H. Huppert , Carbon Capture and Storage in Europe EASAC Policy Report 20, German National Academy of Sciences, Leopoldina, 2013

Organisation for the Prohibition of Chemical Weapons (OPCW) , The Chemical Weapons Convention, http://www.opcw.org/html/db/cwc/eng/cwc_frameset.html

Rubin, E. S., Mantripragada, H., Marks, A., Versteeg, P., & Kitchin, J. (2012). The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 38(5), 630-671. doi:10.1016/j.pecs.2012.03.003

G. H. Koch , M. P. H.Brongers, N. G.Thompson, Y. P.Virmani and J. H.Payer, Corrosion Costs and Preventive Strategies in the United States FHWA-RD-01-156, CC Technologies Laboratories, Inc, NACE International, 2001

Law Offices of Casper Meadows Schwartz & Cook, ‘$80 Million Recovery in Toxic Exposure Suit’, http://www.cmslaw.com/Verdicts-Settlements/80-Million-Recovery-in-Toxic-Exposure-Suit.shtml

L. Grunwald , U.S. EPA Cites UNOCAL for Spill Violations, Press Release, United States Environmental Protection Agency, 1995

Lee, K. B., Beaver, M. G., Caram, H. S., & Sircar, S. (2008). Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications. Industrial & Engineering Chemistry Research, 47(21), 8048-8062. doi:10.1021/ie800795y

Du, N., Park, H. B., Dal-Cin, M. M., & Guiver, M. D. (2012). Advances in high permeability polymeric membrane materials for CO2separations. Energy Environ. Sci., 5(6), 7306-7322. doi:10.1039/c1ee02668b

M. Freemantle , An Introduction to Ionic Liquids, RSC Publications, Cambridge, UK, 2010

Earle, M. J., Esperança, J. M. S. S., Gilea, M. A., Canongia Lopes, J. N., Rebelo, L. P. N., Magee, J. W., … Widegren, J. A. (2006). The distillation and volatility of ionic liquids. Nature, 439(7078), 831-834. doi:10.1038/nature04451

Forsyth, M., Howlett, P. C., Tan, S. K., MacFarlane, D. R., & Birbilis, N. (2006). An Ionic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 9(11), B52. doi:10.1149/1.2344826

Fraser, K. J., & MacFarlane, D. R. (2009). Phosphonium-Based Ionic Liquids: An Overview. Australian Journal of Chemistry, 62(4), 309. doi:10.1071/ch08558

K. R. Seddon , Ionic liquids: Designer solvents?, in The International George Papatheodorou Symposium: Proceedings, ed. S. Boghosian, V. Dracopoulos, C. G. Kontoyannis and G. A. Voyiatzis, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, 1999, pp. 131–135

M. Deetlefs , M.Fanselow and K. R.Seddon, RSC Adv.

W. Freyland , Coulombic Fluids: Bulk and Interfaces, Springer, Heidelberg, 2011

Electrodeposition from Ionic Liquids, ed. F. Endres, D. MacFarlane and A. Abbott, Wiley-VCH, Weinheim, 2008

Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, Wiley-Interscience, Hoboken, New Jersey, 2005

Ionic Liquids: From Knowledge to Application, ed. N. V. Plechkova, R. D. Rogers and K. R. Seddon, American Chemical Society, Washington D.C., 2009

Ionic Liquids in Synthesis, ed. P. Wasserscheid and T. Welton, Wiley-VCH, Weinheim, 2nd edn, 2008

Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j

Ionic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013

Ionic Liquids Further UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2014

Ionic Liquids Completely UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2015

Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28-29. doi:10.1038/19887

C. Villagrán , C. E.Banks, M.Deetlefs, G.Driver, W. R.Pitner, R. G.Compton and C.Hardacre, Chloride Determination in Ionic Liquids, in Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities - Transformations and Processes, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser., Vol. 902, American Chemical Society, Washington D.C., 2005, vol. 902, pp. 244–258

J. L. Anthony , E. J.Maginn and J. F.Brennecke, Gas Solubilities in 1-n-Butyl-3-methylimidazolium Hexafluorophosphate, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 260–269

J. H. Davis Jr. , Working Salts: Syntheses and Uses of Ionic Liquids Containing Functionalized Ions, in Ionic Liquids: Industrial Applications to Green Chemistry, ed. R. D. Rogers and K. R. Seddon, ACS Symp. Ser, Vol. 818, American Chemical Society, Washington D.C., 2002, vol. 818, pp. 247–259

Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2Capture by a Task-Specific Ionic Liquid. Journal of the American Chemical Society, 124(6), 926-927. doi:10.1021/ja017593d

Wang, C., Luo, X., Zhu, X., Cui, G., Jiang, D., Deng, D., … Dai, S. (2013). The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 3(36), 15518. doi:10.1039/c3ra42366b

Ramdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-Art of CO2Capture with Ionic Liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. doi:10.1021/ie3003705

Zhang, X., Zhang, X., Dong, H., Zhao, Z., Zhang, S., & Huang, Y. (2012). Carbon capture with ionic liquids: overview and progress. Energy & Environmental Science, 5(5), 6668. doi:10.1039/c2ee21152a

Yokozeki, A., & Shiflett, M. B. (2009). Separation of Carbon Dioxide and Sulfur Dioxide Gases Using Room-Temperature Ionic Liquid [hmim][Tf2N]. Energy & Fuels, 23(9), 4701-4708. doi:10.1021/ef900649c

Cabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2012). Carbon Dioxide in 1-Butyl-3-methylimidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations. The Journal of Physical Chemistry A, 116(6), 1605-1620. doi:10.1021/jp211211n

Carvalho, P. J., Álvarez, V. H., Schröder, B., Gil, A. M., Marrucho, I. M., Aznar, M., … Coutinho, J. A. P. (2009). Specific Solvation Interactions of CO2on Acetate and Trifluoroacetate Imidazolium Based Ionic Liquids at High Pressures. The Journal of Physical Chemistry B, 113(19), 6803-6812. doi:10.1021/jp901275b

Goodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Zadigian, D. J., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Experimental Measurements of Amine-Functionalized Anion-Tethered Ionic Liquids with Carbon Dioxide. Industrial & Engineering Chemistry Research, 50(1), 111-118. doi:10.1021/ie101688a

Goodrich, B. F., de la Fuente, J. C., Gurkan, B. E., Lopez, Z. K., Price, E. A., Huang, Y., & Brennecke, J. F. (2011). Effect of Water and Temperature on Absorption of CO2by Amine-Functionalized Anion-Tethered Ionic Liquids. The Journal of Physical Chemistry B, 115(29), 9140-9150. doi:10.1021/jp2015534

Ferguson, J. L., Holbrey, J. D., Ng, S., Plechkova, N. V., Seddon, K. R., Tomaszowska, A. A., & Wassell, D. F. (2011). A greener, halide-free approach to ionic liquid synthesis. Pure and Applied Chemistry, 84(3), 723-744. doi:10.1351/pac-con-11-07-21

Shiflett, M. B., Kasprzak, D. J., Junk, C. P., & Yokozeki, A. (2008). Phase behavior of {carbon dioxide+[bmim][Ac]} mixtures. The Journal of Chemical Thermodynamics, 40(1), 25-31. doi:10.1016/j.jct.2007.06.003

Shiflett, M. B., & Yokozeki, A. (2009). Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate], [emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures. Journal of Chemical & Engineering Data, 54(1), 108-114. doi:10.1021/je800701j

Shiflett, M. B., Drew, D. W., Cantini, R. A., & Yokozeki, A. (2010). Carbon Dioxide Capture Using Ionic Liquid 1-Butyl-3-methylimidazolium Acetate. Energy & Fuels, 24(10), 5781-5789. doi:10.1021/ef100868a

Cabaço, M. I., Besnard, M., Danten, Y., & Coutinho, J. A. P. (2011). Solubility of CO2in 1-Butyl-3-methyl-imidazolium-trifluoro Acetate Ionic Liquid Studied by Raman Spectroscopy and DFT Investigations. The Journal of Physical Chemistry B, 115(13), 3538-3550. doi:10.1021/jp111453a

Gurau, G., Rodríguez, H., Kelley, S. P., Janiczek, P., Kalb, R. S., & Rogers, R. D. (2011). Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids. Angewandte Chemie International Edition, 50(50), 12024-12026. doi:10.1002/anie.201105198

Besnard, M., Cabaço, M. I., Vaca Chávez, F., Pinaud, N., Sebastião, P. J., Coutinho, J. A. P., … Danten, Y. (2012). CO2 in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. The Journal of Physical Chemistry A, 116(20), 4890-4901. doi:10.1021/jp211689z

Janiczek, P., Kalb, R. S., Thonhauser, G., & Gamse, T. (2012). Carbon dioxide absorption in a technical-scale-plant utilizing an imidazolium based ionic liquid. Separation and Purification Technology, 97, 20-25. doi:10.1016/j.seppur.2012.03.003

Ober, C. A., & Gupta, R. B. (2012). pH Control of Ionic Liquids with Carbon Dioxide and Water: 1-Ethyl-3-methylimidazolium Acetate. Industrial & Engineering Chemistry Research, 51(6), 2524-2530. doi:10.1021/ie201529d

Stevanovic, S., Podgoršek, A., Pádua, A. A. H., & Costa Gomes, M. F. (2012). Effect of Water on the Carbon Dioxide Absorption by 1-Alkyl-3-methylimidazolium Acetate Ionic Liquids. The Journal of Physical Chemistry B, 116(49), 14416-14425. doi:10.1021/jp3100377

Stevanovic, S., Podgorsek, A., Moura, L., Santini, C. C., Padua, A. A. H., & Costa Gomes, M. F. (2013). Absorption of carbon dioxide by ionic liquids with carboxylate anions. International Journal of Greenhouse Gas Control, 17, 78-88. doi:10.1016/j.ijggc.2013.04.017

Wang, G., Hou, W., Xiao, F., Geng, J., Wu, Y., & Zhang, Z. (2011). Low-Viscosity Triethylbutylammonium Acetate as a Task-Specific Ionic Liquid for Reversible CO2Absorption. Journal of Chemical & Engineering Data, 56(4), 1125-1133. doi:10.1021/je101014q

Wilhelm, E., Battino, R., & Wilcock, R. J. (1977). Low-pressure solubility of gases in liquid water. Chemical Reviews, 77(2), 219-262. doi:10.1021/cr60306a003

Miyano, Y., & Fujihara, I. (2004). Henry’s constants of carbon dioxide in methanol at 250–500 K. Fluid Phase Equilibria, 221(1-2), 57-62. doi:10.1016/j.fluid.2004.04.017

Fernandez, E. S., & Goetheer, E. L. V. (2011). DECAB: Process development of a phase change absorption process. Energy Procedia, 4, 868-875. doi:10.1016/j.egypro.2011.01.131

Zhang, J., Zhang, S., Dong, K., Zhang, Y., Shen, Y., & Lv, X. (2006). Supported Absorption of CO2 by Tetrabutylphosphonium Amino Acid Ionic Liquids. Chemistry - A European Journal, 12(15), 4021-4026. doi:10.1002/chem.200501015

Saravanamurugan, S., Kunov-Kruse, A. J., Fehrmann, R., & Riisager, A. (2014). Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2. ChemSusChem, 7(3), 897-902. doi:10.1002/cssc.201300691

J. Speight , Lange's Handbook of Chemistry, McGraw-Hill, New York, 16th edn, 2005, Section 1.18, pp. 1.310–1.314

Cammarata, L., Kazarian, S. G., Salter, P. A., & Welton, T. (2001). Molecular states of water in room temperature ionic liquidsElectronic Supplementary Information available. See http://www.rsc.org/suppdata/cp/b1/b106900d/. Physical Chemistry Chemical Physics, 3(23), 5192-5200. doi:10.1039/b106900d

Nitta, I., Tomiie, Y., & Koo, C. H. (1952). The crystal structure of potassium bicarbonate, KHCO3. Acta Crystallographica, 5(2), 292-292. doi:10.1107/s0365110x52000848

Sass, R. L., & Scheuerman, R. F. (1962). The crystal structure of sodium bicarbonate. Acta Crystallographica, 15(1), 77-81. doi:10.1107/s0365110x62000158

Adamová, G., Gardas, R. L., Nieuwenhuyzen, M., Puga, A. V., Rebelo, L. P. N., Robertson, A. J., & Seddon, K. R. (2012). Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure. Dalton Transactions, 41(27), 8316. doi:10.1039/c1dt10466g

Gottlieb, H. E., Kotlyar, V., & Nudelman, A. (1997). NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. The Journal of Organic Chemistry, 62(21), 7512-7515. doi:10.1021/jo971176v

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Allen, F. H., & Motherwell, W. D. S. (2002). Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallographica Section B Structural Science, 58(3), 407-422. doi:10.1107/s0108768102004895

Ramnial, T., Taylor, S. A., Bender, M. L., Gorodetsky, B., Lee, P. T. K., Dickie, D. A., … Clyburne, J. A. C. (2008). Carbon-Centered Strong Bases in Phosphonium Ionic Liquids. The Journal of Organic Chemistry, 73(3), 801-812. doi:10.1021/jo701289d

Dietzel, P. D. C., & Jansen, M. (2002). Tetramethylphosphonium hydrogen carbonate. Acta Crystallographica Section E Structure Reports Online, 58(9), o1003-o1004. doi:10.1107/s1600536802013168

Li, H., Hou, Y., & Yang, Y. (2011). Tetraethylammonium bicarbonate trihydrate. Acta Crystallographica Section E Structure Reports Online, 67(8), o1991-o1991. doi:10.1107/s1600536811026080

McMullan, R., & Jeffrey, G. A. (1959). Hydrates of the Tetran‐butyl and Tetrai‐amyl Quaternary Ammonium Salts. The Journal of Chemical Physics, 31(5), 1231-1234. doi:10.1063/1.1730574

Smiglak, M., Hines, C. C., & Rogers, R. D. (2010). New hydrogen carbonate precursors for efficient and byproduct-free syntheses of ionic liquids based on 1,2,3-trimethylimidazolium and N,N-dimethylpyrrolidinium cores. Green Chemistry, 12(3), 491. doi:10.1039/b920003g

Maton, C., Van Hecke, K., & Stevens, C. V. (2015). Peralkylated imidazolium carbonate ionic liquids: synthesis using dimethyl carbonate, reactivity and structure. New Journal of Chemistry, 39(1), 461-468. doi:10.1039/c4nj01301h

Bondi, A. (1964). van der Waals Volumes and Radii. The Journal of Physical Chemistry, 68(3), 441-451. doi:10.1021/j100785a001

Van den Berg, J.-A., & Seddon, K. R. (2003). Critical Evaluation of C−H···X Hydrogen Bonding in the Crystalline State. Crystal Growth & Design, 3(5), 643-661. doi:10.1021/cg034083h

Adamová, G., Canongia Lopes, J. N., Rebelo, L. P. N., Santos, L. M. N. B., Seddon, K. R., & Shimizu, K. (2014). The alternation effect in ionic liquid homologous series. Phys. Chem. Chem. Phys., 16(9), 4033-4038. doi:10.1039/c3cp54584a

M. B. Shiflett and A.Yokozeki, Phase Behaviour of Gases in Ionic Liquids, in Ionic Liquids UnCOILed: Critical Expert Overviews, ed. N. V. Plechkova and K. R. Seddon, Wiley, Hoboken, New Jersey, 2013, pp. 349–398

Ibrahim, A. Y., Ashour, F. H., Ghallab, A. O., & Ali, M. (2014). Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyl diethanol amine. Journal of Natural Gas Science and Engineering, 21, 894-899. doi:10.1016/j.jngse.2014.10.011

Anonymous , Piperazine – Why It's Used And How It Works, The Contractor (Optimized Gas Treating, Inc.), Houston, 2008, 2 [4], http://www.ogtrt.com/files/contactors/vol_2_issue_4.pdf

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem