- -

Composition of Constraint, Hypothesis and Error Models to improve interaction in Human-Machine Interfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composition of Constraint, Hypothesis and Error Models to improve interaction in Human-Machine Interfaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Navarro Cerdán, José Ramón es_ES
dc.contributor.author Llobet Azpitarte, Rafael es_ES
dc.contributor.author Arlandis, Joaquim es_ES
dc.contributor.author Perez-Cortes, Juan-Carlos es_ES
dc.date.accessioned 2016-10-14T08:22:20Z
dc.date.available 2016-10-14T08:22:20Z
dc.date.issued 2016-05
dc.identifier.issn 1566-2535
dc.identifier.uri http://hdl.handle.net/10251/71801
dc.description.abstract We use Weighted Finite-State Transducers (WFSTs) to represent the different sources of information available: the initial hypotheses, the possible errors, the constraints imposed by the task (interaction language) and the user input. The fusion of these models to find the most probable output string can be performed efficiently by using carefully selected transducer operations. The proposed system initially suggests an output based on the set of hypotheses, possible errors and Constraint Models. Then, if human intervention is needed, a multimodal approach, where the user input is combined with the aforementioned models, is applied to produce, with a minimum user effort, the desired output. This approach offers the practical advantages of a de-coupled model (e.g. input-system + parameterized rules + post-processor), keeping at the same time the error-recovery power of an integrated approach, where all the steps of the process are performed in the same formal machine (as in a typical HMM in speech recognition) to avoid that an error at a given step remains unrecoverable in the subsequent steps. After a presentation of the theoretical basis of the proposed multi-source information system, its application to two real world problems, as an example of the possibilities of this architecture, is addressed. The experimental results obtained demonstrate that a significant user effort can be saved when using the proposed procedure. A simple demonstration, to better understand and evaluate the proposed system, is available on the web https://demos.iti.upv.es/hi/. (C) 2015 Elsevier B.V. All rights reserved. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Fusion es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multi-source information fusion es_ES
dc.subject Human machine interaction es_ES
dc.subject Weighted finite-state transducer composition es_ES
dc.subject Interactive multimodal string correction es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Composition of Constraint, Hypothesis and Error Models to improve interaction in Human-Machine Interfaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.inffus.2015.09.001
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto Tecnológico de Informática - Institut Universitari Mixt Tecnològic d'Informàtica es_ES
dc.description.bibliographicCitation Navarro Cerdan, JR.; Llobet Azpitarte, R.; Arlandis, J.; Perez-Cortes, J. (2016). Composition of Constraint, Hypothesis and Error Models to improve interaction in Human-Machine Interfaces. Information Fusion. 29:1-13. doi:10.1016/j.inffus.2015.09.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.inffus.2015.09.001 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.relation.senia 318771 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem