- -

Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

Mostrar el registro completo del ítem

Noar, J.; Loveless, T.; Navarro Herrero, JL.; Olson, JW.; Bruno-Barcena, JM. (2015). Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6. Applied and Environmental Microbiology. 81(13):4507-4516. doi:10.1128/AEM.00679-15

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/71896

Ficheros en el ítem

Metadatos del ítem

Título: Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6
Autor: Noar, Jesse Loveless, Telisa Navarro Herrero, José Luís Olson, Jonathan W. Bruno-Barcena, Jose M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays ...[+]
Palabras clave: AMMONIUM-ASSIMILATING CULTURES , 2ND ALTERNATIVE NITROGENASE , RHODOBACTER-CAPSULATUS , THERMOTOGA-NEAPOLITANA , STRUCTURAL GENES , Transcriptional regulation , ENTEROBACTER-AEROGENES , KLEBSIELLA-PNEUMONIAE , MOLYBDENUM TRANSPORT , MUTATIONAL ANALYSIS
Derechos de uso: Cerrado
Fuente:
Applied and Environmental Microbiology. (issn: 0099-2240 )
DOI: 10.1128/AEM.00679-15
Editorial:
American Society for Microbiology
Versión del editor: http://dx.doi.org/10.1128/AEM.00679-15
Código del Proyecto:
info:eu-repo/grantAgreement/NIH//P30DK034987/
Agradecimientos:
J.N. was the recipient of a 3-year National Science Foundation Graduate Research Fellowship. This project was supported by the North Carolina State University Department of Microbiology (now Plant and Microbial Biology). ...[+]
Tipo: Artículo

References

Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., & Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. Journal of Bacteriology, 171(2), 1075-1086. doi:10.1128/jb.171.2.1075-1086.1989

Luque, F., & Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. MGG Molecular & General Genetics, 227(3), 481-487. doi:10.1007/bf00273941

Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., & Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemical Journal, 293(1), 101-107. doi:10.1042/bj2930101 [+]
Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., & Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. Journal of Bacteriology, 171(2), 1075-1086. doi:10.1128/jb.171.2.1075-1086.1989

Luque, F., & Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. MGG Molecular & General Genetics, 227(3), 481-487. doi:10.1007/bf00273941

Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., & Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemical Journal, 293(1), 101-107. doi:10.1042/bj2930101

Jacobson, M. R., Premakumar, R., & Bishop, P. E. (1986). Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. Journal of Bacteriology, 167(2), 480-486. doi:10.1128/jb.167.2.480-486.1986

Jacobitz, S., & Bishop, P. E. (1992). Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. Journal of Bacteriology, 174(12), 3884-3888. doi:10.1128/jb.174.12.3884-3888.1992

Bishop, P. E., Jarlenski, D. M., & Hetherington, D. R. (1980). Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proceedings of the National Academy of Sciences, 77(12), 7342-7346. doi:10.1073/pnas.77.12.7342

Benemann, J. R., Smith, G. M., Kostel, P. J., & McKenna, C. E. (1973). Tungsten incorporation into Azotobacter vinelandii nitrogenase. FEBS Letters, 29(3), 219-221. doi:10.1016/0014-5793(73)80023-7

Premakumar, R., Jacobitz, S., Ricke, S. C., & Bishop, P. E. (1996). Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii. Journal of Bacteriology, 178(3), 691-696. doi:10.1128/jb.178.3.691-696.1996

Krahn, E., Schneider, K., & Müller, A. (1996). Comparative characterization of H 2 production by the conventional Mo nitrogenase and the alternative «iron-only» nitrogenase of Rhodobacter capsulatus hup - mutants. Applied Microbiology and Biotechnology, 46(3), 285-290. doi:10.1007/s002530050818

Setubal, J. C., dos Santos, P., Goldman, B. S., Ertesvag, H., Espin, G., Rubio, L. M., … Wood, D. (2009). Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes. Journal of Bacteriology, 191(14), 4534-4545. doi:10.1128/jb.00504-09

Seefeldt, L. C., & Arp, D. J. (1986). Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing αβ dimer. Biochimie, 68(1), 25-34. doi:10.1016/s0300-9084(86)81064-1

Bishop, P. E., Hawkins, M. E., & Eady, R. R. (1986). Nitrogen fixation in molybdenum-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Biochemical Journal, 238(2), 437-442. doi:10.1042/bj2380437

Benemann, J. (1996). Hydrogen biotechnology: Progress and prospects. Nature Biotechnology, 14(9), 1101-1103. doi:10.1038/nbt0996-1101

Gregoire-Padró, C. E. (1998). Hydrogen, the Once and Future Fuel. Energy & Fuels, 12(1), 1-2. doi:10.1021/ef970197p

Mudhoo, A., Forster-Carneiro, T., & Sánchez, A. (2010). Biohydrogen production and bioprocess enhancement: A review. Critical Reviews in Biotechnology, 31(3), 250-263. doi:10.3109/07388551.2010.525497

BUSH, J. A., & WILSON, P. W. (1959). A Non-Gummy Chromogenic Strain of Azotobacter vinelandii. Nature, 184(4683), 381-381. doi:10.1038/184381a0

Menon, A. L., Mortenson, L. E., & Robson, R. L. (1992). Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Journal of Bacteriology, 174(14), 4549-4557. doi:10.1128/jb.174.14.4549-4557.1992

Strandberg, G. W., & Wilson, P. W. (1968). Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Canadian Journal of Microbiology, 14(1), 25-31. doi:10.1139/m68-005

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. doi:10.1093/bioinformatics/bts199

Navarro-Herrero JL, Pico-Marco J, Bruno-Barcena JM, Valles-Albentosa S, Pico-Marco E. December 2005. On-line method and equipment for detecting, determining the evolution and quantifying a microbial biomass and other substances that absorb light along the spectrum during the development of biotechnological processes. US patent 6,975,403.

Kleiner, D. (1975). Ammonium uptake by nitrogen fixing bacteria. Archives of Microbiology, 104(1), 163-169. doi:10.1007/bf00447319

Noar, J. D., & Bruno-Barcena, J. M. (2013). Complete Genome Sequences of Azotobacter vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome Announcements, 1(3). doi:10.1128/genomea.00313-13

Chen, J. C., & Mortenson, L. E. (1992). Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1131(2), 199-202. doi:10.1016/0167-4781(92)90077-d

Garg, R. P., Menon, A. L., Jacobs, K., Robson, R. M., & Robson, R. L. (1994). The hypE Gene Completes the Gene Cluster for H2-oxidation in Azotobacter vinelandii. Journal of Molecular Biology, 236(1), 390-396. doi:10.1006/jmbi.1994.1149

Mouncey, N. J., Mitchenall, L. A., & Pau, R. N. (1995). Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. Journal of Bacteriology, 177(18), 5294-5302. doi:10.1128/jb.177.18.5294-5302.1995

Luque, F., Mitchenall, L. A., Chapman, M., Christine, R., & Pau, R. N. (1993). Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Molecular Microbiology, 7(3), 447-459. doi:10.1111/j.1365-2958.1993.tb01136.x

Mouncey, N. J., Mitchenall, L. A., & Pau, R. N. (1996). The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiology, 142(8), 1997-2004. doi:10.1099/13500872-142-8-1997

Kuhn, H., Friederich, U., & Fiechter, A. (1979). Defined minimal medium for a thermophilic Bacillus sp. developed by a chemostat pulse and shift technique. European Journal of Applied Microbiology and Biotechnology, 6(4), 341-349. doi:10.1007/bf00499164

B�hler, T., Sann, R., Monter, U., Dingler, C., Kuhla, J., & Oelze, J. (1987). Control of dinitrogen fixation in ammonium-assimilating cultures of Azotobacter vinelandii. Archives of Microbiology, 148(3), 247-251. doi:10.1007/bf00414820

B�hler, T., Monter, U., Sann, R., Kuhla, J., Dingler, C., & Oelze, J. (1987). Control of respiration and growth yield in ammonium-assimilating cultures of Azotobacter vinelandii. Archives of Microbiology, 148(3), 242-246. doi:10.1007/bf00414819

Kajii, Y., Kobayashi, M., Takahashi, T., & Onodera, K. (1994). A Novel Type of Mutant ofAzotobacter vinelandiiThat Fixes Nitrogen in the Presence of Tungsten. Bioscience, Biotechnology, and Biochemistry, 58(6), 1179-1180. doi:10.1271/bbb.58.1179

Premakumar, R., Pau, R. N., Mitchenall, L. A., Easo, M., & Bishop, P. E. (1998). Regulation of the transcriptional activators AnfA and VnfA by metals and ammonium inAzotobacter vinelandii. FEMS Microbiology Letters, 164(1), 63-68. doi:10.1111/j.1574-6968.1998.tb13068.x

Chen, J. C., Mortenson, L. E., & Seefeldt, L. C. (1995). Analysis of a gene region required for dihydrogen oxidation in Azotobacter vinelandii. Current Microbiology, 30(6), 351-355. doi:10.1007/bf00369862

Eady, R. R., Smith, B. E., Cook, K. A., & Postgate, J. R. (1972). Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins. Biochemical Journal, 128(3), 655-675. doi:10.1042/bj1280655

Chisnell, J. R., Premakumar, R., & Bishop, P. E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology, 170(1), 27-33. doi:10.1128/jb.170.1.27-33.1988

Schneider, K., Gollan, U., Selsemeier-Voigt, S., Plass, W., & Muffler, A. (1994). Rapid purification of the protein components of a highly active ?iron only? nitrogenase. Naturwissenschaften, 81(9), 405-408. doi:10.1007/bf01132694

Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., & Muller, A. (1997). Comparative Biochemical Characterization of the Iron-Only Nitrogenase and the Molybdenum Nitrogenase from Rhodobacter Capsulatus. European Journal of Biochemistry, 244(3), 789-800. doi:10.1111/j.1432-1033.1997.t01-1-00789.x

Siemann, S., Schneider, K., Oley, M., & Müller, A. (2003). Characterization of a Tungsten-Substituted Nitrogenase Isolated fromRhodobacter capsulatus†,‡. Biochemistry, 42(13), 3846-3857. doi:10.1021/bi0270790

Elsharnouby, O., Hafez, H., Nakhla, G., & El Naggar, M. H. (2013). A critical literature review on biohydrogen production by pure cultures. International Journal of Hydrogen Energy, 38(12), 4945-4966. doi:10.1016/j.ijhydene.2013.02.032

Rosales-Colunga, L. M., Razo-Flores, E., & De León Rodríguez, A. (2012). Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: Impact on hydrogen production. Bioresource Technology, 111, 180-184. doi:10.1016/j.biortech.2012.01.175

Masset, J., Hiligsmann, S., Hamilton, C., Beckers, L., Franck, F., & Thonart, P. (2010). Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 35(8), 3371-3378. doi:10.1016/j.ijhydene.2010.01.061

JO, J., LEE, D., PARK, D., & PARK, J. (2008). Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology, 99(14), 6666-6672. doi:10.1016/j.biortech.2007.11.067

NGUYEN, T., PYOKIM, J., SUNKIM, M., KWANOH, Y., & SIM, S. (2008). Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. International Journal of Hydrogen Energy, 33(5), 1483-1488. doi:10.1016/j.ijhydene.2007.09.033

XING, D., REN, N., WANG, A., LI, Q., FENG, Y., & MA, F. (2008). Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy, 33(5), 1489-1495. doi:10.1016/j.ijhydene.2007.09.038

Seppälä, J. J., Puhakka, J. A., Yli-Harja, O., Karp, M. T., & Santala, V. (2011). Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. International Journal of Hydrogen Energy, 36(17), 10701-10708. doi:10.1016/j.ijhydene.2011.05.189

LU, W., WEN, J., CHEN, Y., SUN, B., JIA, X., LIU, M., & CAIYIN, Q. (2007). Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. International Journal of Hydrogen Energy, 32(8), 1059-1066. doi:10.1016/j.ijhydene.2006.07.010

Ren, Y., Wang, J., Liu, Z., Ren, Y., & Li, G. (2009). Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes. Renewable Energy, 34(12), 2774-2779. doi:10.1016/j.renene.2009.04.011

Ngo, T. A., Nguyen, T. H., & Bui, H. T. V. (2012). Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renewable Energy, 37(1), 174-179. doi:10.1016/j.renene.2011.06.015

Munro, S. A., Zinder, S. H., & Walker, L. P. (2009). The fermentation stoichiometry ofThermotoga neapolitanaand influence of temperature, oxygen, and pH on hydrogen production. Biotechnology Progress, 25(4), 1035-1042. doi:10.1002/btpr.201

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem