Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., & Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. Journal of Bacteriology, 171(2), 1075-1086. doi:10.1128/jb.171.2.1075-1086.1989
Luque, F., & Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. MGG Molecular & General Genetics, 227(3), 481-487. doi:10.1007/bf00273941
Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., & Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemical Journal, 293(1), 101-107. doi:10.1042/bj2930101
[+]
Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., & Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. Journal of Bacteriology, 171(2), 1075-1086. doi:10.1128/jb.171.2.1075-1086.1989
Luque, F., & Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. MGG Molecular & General Genetics, 227(3), 481-487. doi:10.1007/bf00273941
Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., & Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemical Journal, 293(1), 101-107. doi:10.1042/bj2930101
Jacobson, M. R., Premakumar, R., & Bishop, P. E. (1986). Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. Journal of Bacteriology, 167(2), 480-486. doi:10.1128/jb.167.2.480-486.1986
Jacobitz, S., & Bishop, P. E. (1992). Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. Journal of Bacteriology, 174(12), 3884-3888. doi:10.1128/jb.174.12.3884-3888.1992
Bishop, P. E., Jarlenski, D. M., & Hetherington, D. R. (1980). Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proceedings of the National Academy of Sciences, 77(12), 7342-7346. doi:10.1073/pnas.77.12.7342
Benemann, J. R., Smith, G. M., Kostel, P. J., & McKenna, C. E. (1973). Tungsten incorporation into Azotobacter vinelandii
nitrogenase. FEBS Letters, 29(3), 219-221. doi:10.1016/0014-5793(73)80023-7
Premakumar, R., Jacobitz, S., Ricke, S. C., & Bishop, P. E. (1996). Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii. Journal of Bacteriology, 178(3), 691-696. doi:10.1128/jb.178.3.691-696.1996
Krahn, E., Schneider, K., & Müller, A. (1996). Comparative characterization of H 2 production by the conventional Mo nitrogenase and the alternative «iron-only» nitrogenase of Rhodobacter capsulatus hup - mutants. Applied Microbiology and Biotechnology, 46(3), 285-290. doi:10.1007/s002530050818
Setubal, J. C., dos Santos, P., Goldman, B. S., Ertesvag, H., Espin, G., Rubio, L. M., … Wood, D. (2009). Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes. Journal of Bacteriology, 191(14), 4534-4545. doi:10.1128/jb.00504-09
Seefeldt, L. C., & Arp, D. J. (1986). Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing αβ dimer. Biochimie, 68(1), 25-34. doi:10.1016/s0300-9084(86)81064-1
Bishop, P. E., Hawkins, M. E., & Eady, R. R. (1986). Nitrogen fixation in molybdenum-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Biochemical Journal, 238(2), 437-442. doi:10.1042/bj2380437
Benemann, J. (1996). Hydrogen biotechnology: Progress and prospects. Nature Biotechnology, 14(9), 1101-1103. doi:10.1038/nbt0996-1101
Gregoire-Padró, C. E. (1998). Hydrogen, the Once and Future Fuel. Energy & Fuels, 12(1), 1-2. doi:10.1021/ef970197p
Mudhoo, A., Forster-Carneiro, T., & Sánchez, A. (2010). Biohydrogen production and bioprocess enhancement: A review. Critical Reviews in Biotechnology, 31(3), 250-263. doi:10.3109/07388551.2010.525497
BUSH, J. A., & WILSON, P. W. (1959). A Non-Gummy Chromogenic Strain of Azotobacter vinelandii. Nature, 184(4683), 381-381. doi:10.1038/184381a0
Menon, A. L., Mortenson, L. E., & Robson, R. L. (1992). Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Journal of Bacteriology, 174(14), 4549-4557. doi:10.1128/jb.174.14.4549-4557.1992
Strandberg, G. W., & Wilson, P. W. (1968). Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Canadian Journal of Microbiology, 14(1), 25-31. doi:10.1139/m68-005
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. doi:10.1093/bioinformatics/bts199
Navarro-Herrero JL, Pico-Marco J, Bruno-Barcena JM, Valles-Albentosa S, Pico-Marco E. December 2005. On-line method and equipment for detecting, determining the evolution and quantifying a microbial biomass and other substances that absorb light along the spectrum during the development of biotechnological processes. US patent 6,975,403.
Kleiner, D. (1975). Ammonium uptake by nitrogen fixing bacteria. Archives of Microbiology, 104(1), 163-169. doi:10.1007/bf00447319
Noar, J. D., & Bruno-Barcena, J. M. (2013). Complete Genome Sequences of Azotobacter vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome Announcements, 1(3). doi:10.1128/genomea.00313-13
Chen, J. C., & Mortenson, L. E. (1992). Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1131(2), 199-202. doi:10.1016/0167-4781(92)90077-d
Garg, R. P., Menon, A. L., Jacobs, K., Robson, R. M., & Robson, R. L. (1994). The hypE Gene Completes the Gene Cluster for H2-oxidation in Azotobacter vinelandii. Journal of Molecular Biology, 236(1), 390-396. doi:10.1006/jmbi.1994.1149
Mouncey, N. J., Mitchenall, L. A., & Pau, R. N. (1995). Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. Journal of Bacteriology, 177(18), 5294-5302. doi:10.1128/jb.177.18.5294-5302.1995
Luque, F., Mitchenall, L. A., Chapman, M., Christine, R., & Pau, R. N. (1993). Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Molecular Microbiology, 7(3), 447-459. doi:10.1111/j.1365-2958.1993.tb01136.x
Mouncey, N. J., Mitchenall, L. A., & Pau, R. N. (1996). The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiology, 142(8), 1997-2004. doi:10.1099/13500872-142-8-1997
Kuhn, H., Friederich, U., & Fiechter, A. (1979). Defined minimal medium for a thermophilic Bacillus sp. developed by a chemostat pulse and shift technique. European Journal of Applied Microbiology and Biotechnology, 6(4), 341-349. doi:10.1007/bf00499164
B�hler, T., Sann, R., Monter, U., Dingler, C., Kuhla, J., & Oelze, J. (1987). Control of dinitrogen fixation in ammonium-assimilating cultures of Azotobacter vinelandii. Archives of Microbiology, 148(3), 247-251. doi:10.1007/bf00414820
B�hler, T., Monter, U., Sann, R., Kuhla, J., Dingler, C., & Oelze, J. (1987). Control of respiration and growth yield in ammonium-assimilating cultures of Azotobacter vinelandii. Archives of Microbiology, 148(3), 242-246. doi:10.1007/bf00414819
Kajii, Y., Kobayashi, M., Takahashi, T., & Onodera, K. (1994). A Novel Type of Mutant ofAzotobacter vinelandiiThat Fixes Nitrogen in the Presence of Tungsten. Bioscience, Biotechnology, and Biochemistry, 58(6), 1179-1180. doi:10.1271/bbb.58.1179
Premakumar, R., Pau, R. N., Mitchenall, L. A., Easo, M., & Bishop, P. E. (1998). Regulation of the transcriptional activators AnfA and VnfA by metals and ammonium inAzotobacter vinelandii. FEMS Microbiology Letters, 164(1), 63-68. doi:10.1111/j.1574-6968.1998.tb13068.x
Chen, J. C., Mortenson, L. E., & Seefeldt, L. C. (1995). Analysis of a gene region required for dihydrogen oxidation in Azotobacter vinelandii. Current Microbiology, 30(6), 351-355. doi:10.1007/bf00369862
Eady, R. R., Smith, B. E., Cook, K. A., & Postgate, J. R. (1972). Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins. Biochemical Journal, 128(3), 655-675. doi:10.1042/bj1280655
Chisnell, J. R., Premakumar, R., & Bishop, P. E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology, 170(1), 27-33. doi:10.1128/jb.170.1.27-33.1988
Schneider, K., Gollan, U., Selsemeier-Voigt, S., Plass, W., & Muffler, A. (1994). Rapid purification of the protein components of a highly active ?iron only? nitrogenase. Naturwissenschaften, 81(9), 405-408. doi:10.1007/bf01132694
Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., & Muller, A. (1997). Comparative Biochemical Characterization of the Iron-Only Nitrogenase and the Molybdenum Nitrogenase from Rhodobacter Capsulatus. European Journal of Biochemistry, 244(3), 789-800. doi:10.1111/j.1432-1033.1997.t01-1-00789.x
Siemann, S., Schneider, K., Oley, M., & Müller, A. (2003). Characterization of a Tungsten-Substituted Nitrogenase Isolated fromRhodobacter capsulatus†,‡. Biochemistry, 42(13), 3846-3857. doi:10.1021/bi0270790
Elsharnouby, O., Hafez, H., Nakhla, G., & El Naggar, M. H. (2013). A critical literature review on biohydrogen production by pure cultures. International Journal of Hydrogen Energy, 38(12), 4945-4966. doi:10.1016/j.ijhydene.2013.02.032
Rosales-Colunga, L. M., Razo-Flores, E., & De León Rodríguez, A. (2012). Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: Impact on hydrogen production. Bioresource Technology, 111, 180-184. doi:10.1016/j.biortech.2012.01.175
Masset, J., Hiligsmann, S., Hamilton, C., Beckers, L., Franck, F., & Thonart, P. (2010). Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 35(8), 3371-3378. doi:10.1016/j.ijhydene.2010.01.061
JO, J., LEE, D., PARK, D., & PARK, J. (2008). Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology, 99(14), 6666-6672. doi:10.1016/j.biortech.2007.11.067
NGUYEN, T., PYOKIM, J., SUNKIM, M., KWANOH, Y., & SIM, S. (2008). Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. International Journal of Hydrogen Energy, 33(5), 1483-1488. doi:10.1016/j.ijhydene.2007.09.033
XING, D., REN, N., WANG, A., LI, Q., FENG, Y., & MA, F. (2008). Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy, 33(5), 1489-1495. doi:10.1016/j.ijhydene.2007.09.038
Seppälä, J. J., Puhakka, J. A., Yli-Harja, O., Karp, M. T., & Santala, V. (2011). Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. International Journal of Hydrogen Energy, 36(17), 10701-10708. doi:10.1016/j.ijhydene.2011.05.189
LU, W., WEN, J., CHEN, Y., SUN, B., JIA, X., LIU, M., & CAIYIN, Q. (2007). Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. International Journal of Hydrogen Energy, 32(8), 1059-1066. doi:10.1016/j.ijhydene.2006.07.010
Ren, Y., Wang, J., Liu, Z., Ren, Y., & Li, G. (2009). Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes. Renewable Energy, 34(12), 2774-2779. doi:10.1016/j.renene.2009.04.011
Ngo, T. A., Nguyen, T. H., & Bui, H. T. V. (2012). Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renewable Energy, 37(1), 174-179. doi:10.1016/j.renene.2011.06.015
Munro, S. A., Zinder, S. H., & Walker, L. P. (2009). The fermentation stoichiometry ofThermotoga neapolitanaand influence of temperature, oxygen, and pH on hydrogen production. Biotechnology Progress, 25(4), 1035-1042. doi:10.1002/btpr.201
[-]