- -

Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Noar, Jesse es_ES
dc.contributor.author Loveless, Telisa es_ES
dc.contributor.author Navarro Herrero, José Luís es_ES
dc.contributor.author Olson, Jonathan W. es_ES
dc.contributor.author Bruno-Barcena, Jose M. es_ES
dc.date.accessioned 2016-10-17T09:04:05Z
dc.date.available 2016-10-17T09:04:05Z
dc.date.issued 2015-07
dc.identifier.issn 0099-2240
dc.identifier.uri http://hdl.handle.net/10251/71896
dc.description.abstract The diazotroph Azotobacter vinelandii possesses three distinct nitrogenase isoenzymes, all of which produce molecular hydrogen as a by-product. In batch cultures, A. vinelandii strain CA6, a mutant of strain CA, displays multiple phenotypes distinct from its parent: tolerance to tungstate, impaired growth and molybdate transport, and increased hydrogen evolution. Determining and comparing the genomic sequences of strains CA and CA6 revealed a large deletion in CA6's genome, encompassing genes related to molybdate and iron transport and hydrogen reoxidation. A series of iron uptake analyses and chemostat culture experiments confirmed iron transport impairment and showed that the addition of fixed nitrogen (ammonia) resulted in cessation of hydrogen production. Additional chemostat experiments compared the hydrogen-producing parameters of different strains: in iron-sufficient, tungstate-free conditions, strain CA6's yields were identical to those of a strain lacking only a single hydrogenase gene. However, in the presence of tungstate, CA6 produced several times more hydrogen. A. vinelandii may hold promise for developing a novel strategy for production of hydrogen as an energy compound. es_ES
dc.description.sponsorship J.N. was the recipient of a 3-year National Science Foundation Graduate Research Fellowship. This project was supported by the North Carolina State University Department of Microbiology (now Plant and Microbial Biology). The University of North Carolina-Chapel Hill Core facility is supported by grant number NIH P30 DK34987. en_EN
dc.language Inglés es_ES
dc.publisher American Society for Microbiology es_ES
dc.relation.ispartof Applied and Environmental Microbiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AMMONIUM-ASSIMILATING CULTURES es_ES
dc.subject 2ND ALTERNATIVE NITROGENASE es_ES
dc.subject RHODOBACTER-CAPSULATUS es_ES
dc.subject THERMOTOGA-NEAPOLITANA es_ES
dc.subject STRUCTURAL GENES es_ES
dc.subject Transcriptional regulation es_ES
dc.subject ENTEROBACTER-AEROGENES es_ES
dc.subject KLEBSIELLA-PNEUMONIAE es_ES
dc.subject MOLYBDENUM TRANSPORT es_ES
dc.subject MUTATIONAL ANALYSIS es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1128/AEM.00679-15
dc.relation.projectID info:eu-repo/grantAgreement/NIH//P30DK034987/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Noar, J.; Loveless, T.; Navarro Herrero, JL.; Olson, JW.; Bruno-Barcena, JM. (2015). Aerobic Hydrogen Production via Nitrogenase in Azotobacter vinelandii CA6. Applied and Environmental Microbiology. 81(13):4507-4516. doi:10.1128/AEM.00679-15 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1128/AEM.00679-15 es_ES
dc.description.upvformatpinicio 4507 es_ES
dc.description.upvformatpfin 4516 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.description.issue 13 es_ES
dc.relation.senia 296327 es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.description.references Joerger, R. D., Jacobson, M. R., Premakumar, R., Wolfinger, E. D., & Bishop, P. E. (1989). Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for the second alternative nitrogenase from Azotobacter vinelandii. Journal of Bacteriology, 171(2), 1075-1086. doi:10.1128/jb.171.2.1075-1086.1989 es_ES
dc.description.references Luque, F., & Pau, R. N. (1991). Transcriptional regulation by metals of structural genes for Azotobacter vinelandii nitrogenases. MGG Molecular & General Genetics, 227(3), 481-487. doi:10.1007/bf00273941 es_ES
dc.description.references Pau, R. N., Eldridge, M. E., Lowe, D. J., Mitchenall, L. A., & Eady, R. R. (1993). Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemical Journal, 293(1), 101-107. doi:10.1042/bj2930101 es_ES
dc.description.references Jacobson, M. R., Premakumar, R., & Bishop, P. E. (1986). Transcriptional regulation of nitrogen fixation by molybdenum in Azotobacter vinelandii. Journal of Bacteriology, 167(2), 480-486. doi:10.1128/jb.167.2.480-486.1986 es_ES
dc.description.references Jacobitz, S., & Bishop, P. E. (1992). Regulation of nitrogenase-2 in Azotobacter vinelandii by ammonium, molybdenum, and vanadium. Journal of Bacteriology, 174(12), 3884-3888. doi:10.1128/jb.174.12.3884-3888.1992 es_ES
dc.description.references Bishop, P. E., Jarlenski, D. M., & Hetherington, D. R. (1980). Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proceedings of the National Academy of Sciences, 77(12), 7342-7346. doi:10.1073/pnas.77.12.7342 es_ES
dc.description.references Benemann, J. R., Smith, G. M., Kostel, P. J., & McKenna, C. E. (1973). Tungsten incorporation into Azotobacter vinelandii nitrogenase. FEBS Letters, 29(3), 219-221. doi:10.1016/0014-5793(73)80023-7 es_ES
dc.description.references Premakumar, R., Jacobitz, S., Ricke, S. C., & Bishop, P. E. (1996). Phenotypic characterization of a tungsten-tolerant mutant of Azotobacter vinelandii. Journal of Bacteriology, 178(3), 691-696. doi:10.1128/jb.178.3.691-696.1996 es_ES
dc.description.references Krahn, E., Schneider, K., & Müller, A. (1996). Comparative characterization of H 2 production by the conventional Mo nitrogenase and the alternative «iron-only» nitrogenase of Rhodobacter capsulatus hup - mutants. Applied Microbiology and Biotechnology, 46(3), 285-290. doi:10.1007/s002530050818 es_ES
dc.description.references Setubal, J. C., dos Santos, P., Goldman, B. S., Ertesvag, H., Espin, G., Rubio, L. M., … Wood, D. (2009). Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes. Journal of Bacteriology, 191(14), 4534-4545. doi:10.1128/jb.00504-09 es_ES
dc.description.references Seefeldt, L. C., & Arp, D. J. (1986). Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing αβ dimer. Biochimie, 68(1), 25-34. doi:10.1016/s0300-9084(86)81064-1 es_ES
dc.description.references Bishop, P. E., Hawkins, M. E., & Eady, R. R. (1986). Nitrogen fixation in molybdenum-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Biochemical Journal, 238(2), 437-442. doi:10.1042/bj2380437 es_ES
dc.description.references Benemann, J. (1996). Hydrogen biotechnology: Progress and prospects. Nature Biotechnology, 14(9), 1101-1103. doi:10.1038/nbt0996-1101 es_ES
dc.description.references Gregoire-Padró, C. E. (1998). Hydrogen, the Once and Future Fuel. Energy & Fuels, 12(1), 1-2. doi:10.1021/ef970197p es_ES
dc.description.references Mudhoo, A., Forster-Carneiro, T., & Sánchez, A. (2010). Biohydrogen production and bioprocess enhancement: A review. Critical Reviews in Biotechnology, 31(3), 250-263. doi:10.3109/07388551.2010.525497 es_ES
dc.description.references BUSH, J. A., & WILSON, P. W. (1959). A Non-Gummy Chromogenic Strain of Azotobacter vinelandii. Nature, 184(4683), 381-381. doi:10.1038/184381a0 es_ES
dc.description.references Menon, A. L., Mortenson, L. E., & Robson, R. L. (1992). Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Journal of Bacteriology, 174(14), 4549-4557. doi:10.1128/jb.174.14.4549-4557.1992 es_ES
dc.description.references Strandberg, G. W., & Wilson, P. W. (1968). Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Canadian Journal of Microbiology, 14(1), 25-31. doi:10.1139/m68-005 es_ES
dc.description.references Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., … Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. doi:10.1093/bioinformatics/bts199 es_ES
dc.description.references Navarro-Herrero JL, Pico-Marco J, Bruno-Barcena JM, Valles-Albentosa S, Pico-Marco E. December 2005. On-line method and equipment for detecting, determining the evolution and quantifying a microbial biomass and other substances that absorb light along the spectrum during the development of biotechnological processes. US patent 6,975,403. es_ES
dc.description.references Kleiner, D. (1975). Ammonium uptake by nitrogen fixing bacteria. Archives of Microbiology, 104(1), 163-169. doi:10.1007/bf00447319 es_ES
dc.description.references Noar, J. D., & Bruno-Barcena, J. M. (2013). Complete Genome Sequences of Azotobacter vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome Announcements, 1(3). doi:10.1128/genomea.00313-13 es_ES
dc.description.references Chen, J. C., & Mortenson, L. E. (1992). Identification of six open reading frames from a region of the Azotobacter vinelandii genome likely involved in dihydrogen metabolism. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1131(2), 199-202. doi:10.1016/0167-4781(92)90077-d es_ES
dc.description.references Garg, R. P., Menon, A. L., Jacobs, K., Robson, R. M., & Robson, R. L. (1994). The hypE Gene Completes the Gene Cluster for H2-oxidation in Azotobacter vinelandii. Journal of Molecular Biology, 236(1), 390-396. doi:10.1006/jmbi.1994.1149 es_ES
dc.description.references Mouncey, N. J., Mitchenall, L. A., & Pau, R. N. (1995). Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii. Journal of Bacteriology, 177(18), 5294-5302. doi:10.1128/jb.177.18.5294-5302.1995 es_ES
dc.description.references Luque, F., Mitchenall, L. A., Chapman, M., Christine, R., & Pau, R. N. (1993). Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Molecular Microbiology, 7(3), 447-459. doi:10.1111/j.1365-2958.1993.tb01136.x es_ES
dc.description.references Mouncey, N. J., Mitchenall, L. A., & Pau, R. N. (1996). The modE gene product mediates molybdenum-dependent expression of genes for the high-affinity molybdate transporter and modG in Azotobacter vinelandii. Microbiology, 142(8), 1997-2004. doi:10.1099/13500872-142-8-1997 es_ES
dc.description.references Kuhn, H., Friederich, U., & Fiechter, A. (1979). Defined minimal medium for a thermophilic Bacillus sp. developed by a chemostat pulse and shift technique. European Journal of Applied Microbiology and Biotechnology, 6(4), 341-349. doi:10.1007/bf00499164 es_ES
dc.description.references B�hler, T., Sann, R., Monter, U., Dingler, C., Kuhla, J., & Oelze, J. (1987). Control of dinitrogen fixation in ammonium-assimilating cultures of Azotobacter vinelandii. Archives of Microbiology, 148(3), 247-251. doi:10.1007/bf00414820 es_ES
dc.description.references B�hler, T., Monter, U., Sann, R., Kuhla, J., Dingler, C., & Oelze, J. (1987). Control of respiration and growth yield in ammonium-assimilating cultures of Azotobacter vinelandii. Archives of Microbiology, 148(3), 242-246. doi:10.1007/bf00414819 es_ES
dc.description.references Kajii, Y., Kobayashi, M., Takahashi, T., & Onodera, K. (1994). A Novel Type of Mutant ofAzotobacter vinelandiiThat Fixes Nitrogen in the Presence of Tungsten. Bioscience, Biotechnology, and Biochemistry, 58(6), 1179-1180. doi:10.1271/bbb.58.1179 es_ES
dc.description.references Premakumar, R., Pau, R. N., Mitchenall, L. A., Easo, M., & Bishop, P. E. (1998). Regulation of the transcriptional activators AnfA and VnfA by metals and ammonium inAzotobacter vinelandii. FEMS Microbiology Letters, 164(1), 63-68. doi:10.1111/j.1574-6968.1998.tb13068.x es_ES
dc.description.references Chen, J. C., Mortenson, L. E., & Seefeldt, L. C. (1995). Analysis of a gene region required for dihydrogen oxidation in Azotobacter vinelandii. Current Microbiology, 30(6), 351-355. doi:10.1007/bf00369862 es_ES
dc.description.references Eady, R. R., Smith, B. E., Cook, K. A., & Postgate, J. R. (1972). Nitrogenase of Klebsiella pneumoniae. Purification and properties of the component proteins. Biochemical Journal, 128(3), 655-675. doi:10.1042/bj1280655 es_ES
dc.description.references Chisnell, J. R., Premakumar, R., & Bishop, P. E. (1988). Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. Journal of Bacteriology, 170(1), 27-33. doi:10.1128/jb.170.1.27-33.1988 es_ES
dc.description.references Schneider, K., Gollan, U., Selsemeier-Voigt, S., Plass, W., & Muffler, A. (1994). Rapid purification of the protein components of a highly active ?iron only? nitrogenase. Naturwissenschaften, 81(9), 405-408. doi:10.1007/bf01132694 es_ES
dc.description.references Schneider, K., Gollan, U., Drottboom, M., Selsemeier-Voigt, S., & Muller, A. (1997). Comparative Biochemical Characterization of the Iron-Only Nitrogenase and the Molybdenum Nitrogenase from Rhodobacter Capsulatus. European Journal of Biochemistry, 244(3), 789-800. doi:10.1111/j.1432-1033.1997.t01-1-00789.x es_ES
dc.description.references Siemann, S., Schneider, K., Oley, M., & Müller, A. (2003). Characterization of a Tungsten-Substituted Nitrogenase Isolated fromRhodobacter capsulatus†,‡. Biochemistry, 42(13), 3846-3857. doi:10.1021/bi0270790 es_ES
dc.description.references Elsharnouby, O., Hafez, H., Nakhla, G., & El Naggar, M. H. (2013). A critical literature review on biohydrogen production by pure cultures. International Journal of Hydrogen Energy, 38(12), 4945-4966. doi:10.1016/j.ijhydene.2013.02.032 es_ES
dc.description.references Rosales-Colunga, L. M., Razo-Flores, E., & De León Rodríguez, A. (2012). Fermentation of lactose and its constituent sugars by Escherichia coli WDHL: Impact on hydrogen production. Bioresource Technology, 111, 180-184. doi:10.1016/j.biortech.2012.01.175 es_ES
dc.description.references Masset, J., Hiligsmann, S., Hamilton, C., Beckers, L., Franck, F., & Thonart, P. (2010). Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. International Journal of Hydrogen Energy, 35(8), 3371-3378. doi:10.1016/j.ijhydene.2010.01.061 es_ES
dc.description.references JO, J., LEE, D., PARK, D., & PARK, J. (2008). Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technology, 99(14), 6666-6672. doi:10.1016/j.biortech.2007.11.067 es_ES
dc.description.references NGUYEN, T., PYOKIM, J., SUNKIM, M., KWANOH, Y., & SIM, S. (2008). Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. International Journal of Hydrogen Energy, 33(5), 1483-1488. doi:10.1016/j.ijhydene.2007.09.033 es_ES
dc.description.references XING, D., REN, N., WANG, A., LI, Q., FENG, Y., & MA, F. (2008). Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy, 33(5), 1489-1495. doi:10.1016/j.ijhydene.2007.09.038 es_ES
dc.description.references Seppälä, J. J., Puhakka, J. A., Yli-Harja, O., Karp, M. T., & Santala, V. (2011). Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. International Journal of Hydrogen Energy, 36(17), 10701-10708. doi:10.1016/j.ijhydene.2011.05.189 es_ES
dc.description.references LU, W., WEN, J., CHEN, Y., SUN, B., JIA, X., LIU, M., & CAIYIN, Q. (2007). Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. International Journal of Hydrogen Energy, 32(8), 1059-1066. doi:10.1016/j.ijhydene.2006.07.010 es_ES
dc.description.references Ren, Y., Wang, J., Liu, Z., Ren, Y., & Li, G. (2009). Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes. Renewable Energy, 34(12), 2774-2779. doi:10.1016/j.renene.2009.04.011 es_ES
dc.description.references Ngo, T. A., Nguyen, T. H., & Bui, H. T. V. (2012). Thermophilic fermentative hydrogen production from xylose by Thermotoga neapolitana DSM 4359. Renewable Energy, 37(1), 174-179. doi:10.1016/j.renene.2011.06.015 es_ES
dc.description.references Munro, S. A., Zinder, S. H., & Walker, L. P. (2009). The fermentation stoichiometry ofThermotoga neapolitanaand influence of temperature, oxygen, and pH on hydrogen production. Biotechnology Progress, 25(4), 1035-1042. doi:10.1002/btpr.201 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem