- -

Two classes of metric spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Two classes of metric spaces

Show full item record

Garrido, I.; Meroño, AS. (2016). Two classes of metric spaces. Applied General Topology. 17(1):57-70. https://doi.org/10.4995/agt.2016.4401

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72370

Files in this item

Item Metadata

Title: Two classes of metric spaces
Author: Garrido, Isabel Meroño, Ana S.
Issued date:
Abstract:
[EN] The class of metric spaces (X,d) known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple ...[+]
Subjects: Metric spaces , Real-valued uniformly continuous functions , Real-valued Lipschitz functions , Bornologies , Bourbaki-boundedness , Countable uniform partitions , Small-determined spaces , B-simple spaces
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2016.4401
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2016.4401
Project ID:
info:eu-repo/grantAgreement/MINECO//MTM2012-34341/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/
Thanks:
Partially supported by MINECO Project MTM2012-34341 (Spain)
Type: Artículo

References

Atsuji, M. (1958). Uniform continuity of continuous functions of metric spaces. Pacific Journal of Mathematics, 8(1), 11-16. doi:10.2140/pjm.1958.8.11

Garrido, M. I., & Jaramillo, J. A. (2008). Lipschitz-type functions on metric spaces. Journal of Mathematical Analysis and Applications, 340(1), 282-290. doi:10.1016/j.jmaa.2007.08.028

Urbanec, J., Kopecký, J., & Kajfosz, J. (1959). РАДИАЦИОННЫЙ ЗАХВАТ МЕДЛЕННЫХ НЕЙТРОНОВ ЯДРАМИ АТОМОВ. Czechoslovak Journal of Physics, 9(5), 544-551. doi:10.1007/bf01556943

Levy, R., & Rice, M. D. (1986). Techniques and examples in U-embedding. Topology and its Applications, 22(2), 157-174. doi:10.1016/0166-8641(86)90006-4

recommendations

 

This item appears in the following Collection(s)

Show full item record