Mostrar el registro sencillo del ítem
dc.contributor.author | Garrido, Isabel | es_ES |
dc.contributor.author | Meroño, Ana S. | es_ES |
dc.date.accessioned | 2016-10-20T08:23:55Z | |
dc.date.available | 2016-10-20T08:23:55Z | |
dc.date.issued | 2016-04-12 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/72370 | |
dc.description.abstract | [EN] The class of metric spaces (X,d) known as small-determined spaces, introduced by Garrido and Jaramillo, are properly defined by means of some type of real-valued Lipschitz functions on X. On the other hand, B-simple metric spaces introduced by Hejcman are defined in terms of some kind of bornologies of bounded subsets of X. In this note we present a common framework where both classes of metric spaces can be studied which allows us to see not only the relationships between them but also to obtain new internal characterizations of these metric properties. | es_ES |
dc.description.sponsorship | Partially supported by MINECO Project MTM2012-34341 (Spain) | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Metric spaces | es_ES |
dc.subject | Real-valued uniformly continuous functions | es_ES |
dc.subject | Real-valued Lipschitz functions | es_ES |
dc.subject | Bornologies | es_ES |
dc.subject | Bourbaki-boundedness | es_ES |
dc.subject | Countable uniform partitions | es_ES |
dc.subject | Small-determined spaces | es_ES |
dc.subject | B-simple spaces | es_ES |
dc.title | Two classes of metric spaces | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-10-20T07:36:12Z | |
dc.identifier.doi | 10.4995/agt.2016.4401 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2012-34341/ES/ANALISIS FUNCIONAL NO LINEAL Y GEOMETRICO/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Garrido, I.; Meroño, AS. (2016). Two classes of metric spaces. Applied General Topology. 17(1):57-70. https://doi.org/10.4995/agt.2016.4401 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2016.4401 | es_ES |
dc.description.upvformatpinicio | 57 | es_ES |
dc.description.upvformatpfin | 70 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.description.references | Atsuji, M. (1958). Uniform continuity of continuous functions of metric spaces. Pacific Journal of Mathematics, 8(1), 11-16. doi:10.2140/pjm.1958.8.11 | es_ES |
dc.description.references | Garrido, M. I., & Jaramillo, J. A. (2008). Lipschitz-type functions on metric spaces. Journal of Mathematical Analysis and Applications, 340(1), 282-290. doi:10.1016/j.jmaa.2007.08.028 | es_ES |
dc.description.references | Urbanec, J., Kopecký, J., & Kajfosz, J. (1959). РАДИАЦИОННЫЙ ЗАХВАТ МЕДЛЕННЫХ НЕЙТРОНОВ ЯДРАМИ АТОМОВ. Czechoslovak Journal of Physics, 9(5), 544-551. doi:10.1007/bf01556943 | es_ES |
dc.description.references | Levy, R., & Rice, M. D. (1986). Techniques and examples in U-embedding. Topology and its Applications, 22(2), 157-174. doi:10.1016/0166-8641(86)90006-4 | es_ES |