- -

A note on uniform entropy for maps having topological specification property

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A note on uniform entropy for maps having topological specification property

Show full item record

Shah, S.; Das, R.; Das, T. (2016). A note on uniform entropy for maps having topological specification property. Applied General Topology. 17(2):123-127. doi:10.4995/agt.2016.4555.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72382

Files in this item

Item Metadata

Title: A note on uniform entropy for maps having topological specification property
Author: Shah, Sejal Das, Ruchi Das, Tarun
Issued date:
Abstract:
[EN] We prove that if a uniformly continuous self-map $f$ of a uniform space has topological specification property then the map $f$ has positive uniform entropy, which extends the similar known result for homeomorphisms ...[+]
Subjects: Topological specification property , Uniform entropy , Uniform spaces
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2016.4555
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2016.4555
Thanks:
The second author is supported by UGC Major Research Project F.N. 42-25/2013(SR)
Type: Artículo

References

Adler, R. L., Konheim, A. G., & McAndrew, M. H. (1965). Topological entropy. Transactions of the American Mathematical Society, 114(2), 309-309. doi:10.1090/s0002-9947-1965-0175106-9

Amigó, J., Keller, K., & Unakafova, V. A. (2015). On entropy, entropy-like quantities, and applications. Discrete and Continuous Dynamical Systems - Series B, 20(10), 3301-3343. doi:10.3934/dcdsb.2015.20.3301

Bowen, R. (1971). Entropy for group endomorphisms and homogeneous spaces. Transactions of the American Mathematical Society, 153, 401-401. doi:10.1090/s0002-9947-1971-0274707-x [+]
Adler, R. L., Konheim, A. G., & McAndrew, M. H. (1965). Topological entropy. Transactions of the American Mathematical Society, 114(2), 309-309. doi:10.1090/s0002-9947-1965-0175106-9

Amigó, J., Keller, K., & Unakafova, V. A. (2015). On entropy, entropy-like quantities, and applications. Discrete and Continuous Dynamical Systems - Series B, 20(10), 3301-3343. doi:10.3934/dcdsb.2015.20.3301

Bowen, R. (1971). Entropy for group endomorphisms and homogeneous spaces. Transactions of the American Mathematical Society, 153, 401-401. doi:10.1090/s0002-9947-1971-0274707-x

Ceccherini-Silberstein, T., & Coornaert, M. (2013). Sensitivity and devaney’s chaos in uniform spaces. Journal of Dynamical and Control Systems, 19(3), 349-357. doi:10.1007/s10883-013-9182-7

Das, T., Lee, K., Richeson, D., & Wiseman, J. (2013). Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces. Topology and its Applications, 160(1), 149-158. doi:10.1016/j.topol.2012.10.010

Dikranjan, D., Sanchis, M., & Virili, S. (2012). New and old facts about entropy in uniform spaces and topological groups. Topology and its Applications, 159(7), 1916-1942. doi:10.1016/j.topol.2011.05.046

Furstenberg, H. (1967). Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Mathematical Systems Theory, 1(1), 1-49. doi:10.1007/bf01692494

Goodman, T. N. T. (1971). Relating Topological Entropy and Measure Entropy. Bulletin of the London Mathematical Society, 3(2), 176-180. doi:10.1112/blms/3.2.176

Hood, B. M. (1974). Topological Entropy and Uniform Spaces. Journal of the London Mathematical Society, s2-8(4), 633-641. doi:10.1112/jlms/s2-8.4.633

[-]

This item appears in the following Collection(s)

Show full item record