- -

A note on uniform entropy for maps having topological specification property

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on uniform entropy for maps having topological specification property

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Shah, Sejal es_ES
dc.contributor.author Das, Ruchi es_ES
dc.contributor.author Das, Tarun es_ES
dc.date.accessioned 2016-10-20T09:45:29Z
dc.date.available 2016-10-20T09:45:29Z
dc.date.issued 2016-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/72382
dc.description.abstract [EN] We prove that if a uniformly continuous self-map $f$ of a uniform space has topological specification property then the map $f$ has positive uniform entropy, which extends the similar known result for homeomorphisms on compact metric spaces having specification property. An example is also provided to justify that the converse is not true. es_ES
dc.description.sponsorship The second author is supported by UGC Major Research Project F.N. 42-25/2013(SR)
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Topological specification property es_ES
dc.subject Uniform entropy es_ES
dc.subject Uniform spaces es_ES
dc.title A note on uniform entropy for maps having topological specification property es_ES
dc.type Artículo es_ES
dc.date.updated 2016-10-20T08:33:14Z
dc.identifier.doi 10.4995/agt.2016.4555
dc.relation.projectID info:eu-repo/grantAgreement/UGC//42-25%2F2013(SR)/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Shah, S.; Das, R.; Das, T. (2016). A note on uniform entropy for maps having topological specification property. Applied General Topology. 17(2):123-127. https://doi.org/10.4995/agt.2016.4555 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2016.4555 es_ES
dc.description.upvformatpinicio 123 es_ES
dc.description.upvformatpfin 127 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder University Grants Commission, India
dc.description.references Adler, R. L., Konheim, A. G., & McAndrew, M. H. (1965). Topological entropy. Transactions of the American Mathematical Society, 114(2), 309-309. doi:10.1090/s0002-9947-1965-0175106-9 es_ES
dc.description.references Amigó, J., Keller, K., & Unakafova, V. A. (2015). On entropy, entropy-like quantities, and applications. Discrete and Continuous Dynamical Systems - Series B, 20(10), 3301-3343. doi:10.3934/dcdsb.2015.20.3301 es_ES
dc.description.references Bowen, R. (1971). Entropy for group endomorphisms and homogeneous spaces. Transactions of the American Mathematical Society, 153, 401-401. doi:10.1090/s0002-9947-1971-0274707-x es_ES
dc.description.references Ceccherini-Silberstein, T., & Coornaert, M. (2013). Sensitivity and devaney’s chaos in uniform spaces. Journal of Dynamical and Control Systems, 19(3), 349-357. doi:10.1007/s10883-013-9182-7 es_ES
dc.description.references Das, T., Lee, K., Richeson, D., & Wiseman, J. (2013). Spectral decomposition for topologically Anosov homeomorphisms on noncompact and non-metrizable spaces. Topology and its Applications, 160(1), 149-158. doi:10.1016/j.topol.2012.10.010 es_ES
dc.description.references Dikranjan, D., Sanchis, M., & Virili, S. (2012). New and old facts about entropy in uniform spaces and topological groups. Topology and its Applications, 159(7), 1916-1942. doi:10.1016/j.topol.2011.05.046 es_ES
dc.description.references Furstenberg, H. (1967). Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Mathematical Systems Theory, 1(1), 1-49. doi:10.1007/bf01692494 es_ES
dc.description.references Goodman, T. N. T. (1971). Relating Topological Entropy and Measure Entropy. Bulletin of the London Mathematical Society, 3(2), 176-180. doi:10.1112/blms/3.2.176 es_ES
dc.description.references Hood, B. M. (1974). Topological Entropy and Uniform Spaces. Journal of the London Mathematical Society, s2-8(4), 633-641. doi:10.1112/jlms/s2-8.4.633 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem