Mostrar el registro sencillo del ítem
dc.contributor.author | Boxer, Laurence | es_ES |
dc.contributor.author | Staecker, P. Christopher | es_ES |
dc.date.accessioned | 2016-10-20T09:52:57Z | |
dc.date.available | 2016-10-20T09:52:57Z | |
dc.date.issued | 2016-10-03 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/72386 | |
dc.description.abstract | [EN] The current paper focuses on fundamental groups and Euler characteristics of various digital models of the 2-dimensional sphere. For all models that we consider, we show that the fundamental groups are trivial, and compute the Euler characteristics (which are not always equal). We consider the connected sum of digital surfaces and investigate how this operation relates to the fundamental group and Euler characteristic. We also consider two related but dierent notions of a digital image having "no holes," and relate this to the triviality of the fundamental group. Many of our results have origins in the paper [15] by S.-E. Han, which contains many errors. We correct these errors when possible, and leave some open questions. We also present some original results. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Digital topology | es_ES |
dc.subject | Digital image | es_ES |
dc.subject | Fundamental group | es_ES |
dc.subject | Euler characteristic | es_ES |
dc.title | Fundamental groups and Euler characteristics of sphere-like digital images | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-10-20T08:33:24Z | |
dc.identifier.doi | 10.4995/agt.2016.4624 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Boxer, L.; Staecker, PC. (2016). Fundamental groups and Euler characteristics of sphere-like digital images. Applied General Topology. 17(2):139-158. https://doi.org/10.4995/agt.2016.4624 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2016.4624 | es_ES |
dc.description.upvformatpinicio | 139 | es_ES |
dc.description.upvformatpfin | 158 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | Boxer, L. (1994). Digitally continuous functions. Pattern Recognition Letters, 15(8), 833-839. doi:10.1016/0167-8655(94)90012-4 | es_ES |
dc.description.references | Boxer, L. (2005). Properties of Digital Homotopy. Journal of Mathematical Imaging and Vision, 22(1), 19-26. doi:10.1007/s10851-005-4780-y | es_ES |
dc.description.references | Boxer, L. (2006). Homotopy Properties of Sphere-Like Digital Images. Journal of Mathematical Imaging and Vision, 24(2), 167-175. doi:10.1007/s10851-005-3619-x | es_ES |
dc.description.references | Boxer, L. (2006). Digital Products, Wedges, and Covering Spaces. Journal of Mathematical Imaging and Vision, 25(2), 159-171. doi:10.1007/s10851-006-9698-5 | es_ES |
dc.description.references | Boxer, L. (2010). Continuous Maps on Digital Simple Closed Curves. Applied Mathematics, 01(05), 377-386. doi:10.4236/am.2010.15050 | es_ES |
dc.description.references | Chen, L., & Zeng, T. (2014). A Convex Variational Model for Restoring Blurred Images with Large Rician Noise. Journal of Mathematical Imaging and Vision, 53(1), 92-111. doi:10.1007/s10851-014-0551-y | es_ES |
dc.description.references | Han, S.-E. (2007). Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces. Information Sciences, 177(16), 3314-3326. doi:10.1016/j.ins.2006.12.013 | es_ES |
dc.description.references | Han, S.-E. (2008). Equivalent (k0,k1)-covering and generalized digital lifting. Information Sciences, 178(2), 550-561. doi:10.1016/j.ins.2007.02.004 | es_ES |
dc.description.references | Kong, T. Y. (1989). A digital fundamental group. Computers & Graphics, 13(2), 159-166. doi:10.1016/0097-8493(89)90058-7 | es_ES |
dc.description.references | Rosenfeld, A. (1979). Digital Topology. The American Mathematical Monthly, 86(8), 621. doi:10.2307/2321290 | es_ES |
dc.description.references | Rosenfeld, A. (1986). ‘Continuous’ functions on digital pictures. Pattern Recognition Letters, 4(3), 177-184. doi:10.1016/0167-8655(86)90017-6 | es_ES |