- -

Fundamental groups and Euler characteristics of sphere-like digital images

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fundamental groups and Euler characteristics of sphere-like digital images

Show simple item record

Files in this item

dc.contributor.author Boxer, Laurence es_ES
dc.contributor.author Staecker, P. Christopher es_ES
dc.date.accessioned 2016-10-20T09:52:57Z
dc.date.available 2016-10-20T09:52:57Z
dc.date.issued 2016-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/72386
dc.description.abstract [EN] The current paper focuses on fundamental groups and Euler characteristics of various digital models of the 2-dimensional sphere. For all models that we consider, we show that the fundamental groups are trivial, and compute the Euler characteristics (which are not always equal). We consider the connected sum of digital surfaces and investigate how this operation relates to the fundamental group and Euler characteristic. We also consider two related but dierent notions of a digital image having "no holes," and relate this to the triviality of the fundamental group. Many of our results have origins in the paper [15] by S.-E. Han, which contains many errors. We correct these errors when possible, and leave some open questions. We also present some original results. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Digital topology es_ES
dc.subject Digital image es_ES
dc.subject Fundamental group es_ES
dc.subject Euler characteristic es_ES
dc.title Fundamental groups and Euler characteristics of sphere-like digital images es_ES
dc.type Artículo es_ES
dc.date.updated 2016-10-20T08:33:24Z
dc.identifier.doi 10.4995/agt.2016.4624
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Boxer, L.; Staecker, PC. (2016). Fundamental groups and Euler characteristics of sphere-like digital images. Applied General Topology. 17(2):139-158. doi:10.4995/agt.2016.4624. es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2016.4624 es_ES
dc.description.upvformatpinicio 139 es_ES
dc.description.upvformatpfin 158 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.relation.references Boxer, L. (1994). Digitally continuous functions. Pattern Recognition Letters, 15(8), 833-839. doi:10.1016/0167-8655(94)90012-4 es_ES
dc.relation.references Boxer, L. (2005). Properties of Digital Homotopy. Journal of Mathematical Imaging and Vision, 22(1), 19-26. doi:10.1007/s10851-005-4780-y es_ES
dc.relation.references Boxer, L. (2006). Homotopy Properties of Sphere-Like Digital Images. Journal of Mathematical Imaging and Vision, 24(2), 167-175. doi:10.1007/s10851-005-3619-x es_ES
dc.relation.references Boxer, L. (2006). Digital Products, Wedges, and Covering Spaces. Journal of Mathematical Imaging and Vision, 25(2), 159-171. doi:10.1007/s10851-006-9698-5 es_ES
dc.relation.references Boxer, L. (2010). Continuous Maps on Digital Simple Closed Curves. Applied Mathematics, 01(05), 377-386. doi:10.4236/am.2010.15050 es_ES
dc.relation.references Chen, L., & Zeng, T. (2014). A Convex Variational Model for Restoring Blurred Images with Large Rician Noise. Journal of Mathematical Imaging and Vision, 53(1), 92-111. doi:10.1007/s10851-014-0551-y es_ES
dc.relation.references Han, S.-E. (2007). Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces. Information Sciences, 177(16), 3314-3326. doi:10.1016/j.ins.2006.12.013 es_ES
dc.relation.references Han, S.-E. (2008). Equivalent (k0,k1)-covering and generalized digital lifting. Information Sciences, 178(2), 550-561. doi:10.1016/j.ins.2007.02.004 es_ES
dc.relation.references Kong, T. Y. (1989). A digital fundamental group. Computers & Graphics, 13(2), 159-166. doi:10.1016/0097-8493(89)90058-7 es_ES
dc.relation.references Rosenfeld, A. (1979). Digital Topology. The American Mathematical Monthly, 86(8), 621. doi:10.2307/2321290 es_ES
dc.relation.references Rosenfeld, A. (1986). ‘Continuous’ functions on digital pictures. Pattern Recognition Letters, 4(3), 177-184. doi:10.1016/0167-8655(86)90017-6 es_ES


This item appears in the following Collection(s)

Show simple item record