- -

Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders

Mostrar el registro completo del ítem

Komal, S.; Kumam, P. (2016). Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders. Applied General Topology. 17(2):173-183. https://doi.org/10.4995/agt.2016.5180

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72392

Ficheros en el ítem

Metadatos del ítem

Título: Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders
Autor: Komal, Somayya Kumam, Poom
Fecha difusión:
Resumen:
[EN] The purpose of this article is to establish the global optimization with partial orders for the pair of non-self mappings, by introducing new type of contractions like $\alpha$-ordered contractions and $\alpha$-ordered ...[+]
Palabras clave: Common best proximity point , Global optimal approximate solution , Proximally increasing mappings , $\alpha$-ordered contractions , $\alpha$-ordered proximal contraction , $\alpha$-ordered proximal cyclic contraction
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2016.5180
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2016.5180
Agradecimientos:
Somayya Komal was supported by the Petchra Pra Jom Klao Doctoral Scholarship Academic for Ph.D. Program at KMUTT. This project was supported by the Theoretical and Computational Science (TaCS) Center under Computational ...[+]
Tipo: Artículo

References

Abkar, A., & Gabeleh, M. (2011). Global Optimal Solutions of Noncyclic Mappings in Metric Spaces. Journal of Optimization Theory and Applications, 153(2), 298-305. doi:10.1007/s10957-011-9966-4

Al-Thagafi, M. A., & Shahzad, N. (2009). Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Analysis: Theory, Methods & Applications, 70(3), 1209-1216. doi:10.1016/j.na.2008.02.004

Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022 [+]
Abkar, A., & Gabeleh, M. (2011). Global Optimal Solutions of Noncyclic Mappings in Metric Spaces. Journal of Optimization Theory and Applications, 153(2), 298-305. doi:10.1007/s10957-011-9966-4

Al-Thagafi, M. A., & Shahzad, N. (2009). Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Analysis: Theory, Methods & Applications, 70(3), 1209-1216. doi:10.1016/j.na.2008.02.004

Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022

Sadiq Basha, S. (2010). Extensions of Banach’s Contraction Principle. Numerical Functional Analysis and Optimization, 31(5), 569-576. doi:10.1080/01630563.2010.485713

Sadiq Basha, S. (2010). Best proximity points: global optimal approximate solutions. Journal of Global Optimization, 49(1), 15-21. doi:10.1007/s10898-009-9521-0

Sadiq Basha, S. (2011). Best proximity point theorems generalizing the contraction principle. Nonlinear Analysis: Theory, Methods & Applications, 74(17), 5844-5850. doi:10.1016/j.na.2011.04.017

Sadiq Basha, S. (2011). Common best proximity points: global minimization of multi-objective functions. Journal of Global Optimization, 54(2), 367-373. doi:10.1007/s10898-011-9760-8

Basha, S. S. (2012). Global optimization in metric spaces with partial orders. Optimization, 63(5), 817-825. doi:10.1080/02331934.2012.685238

Sadiq Basha, S., Shahzad, N., & Jeyaraj, R. (2011). Best proximity points: approximation and optimization. Optimization Letters, 7(1), 145-155. doi:10.1007/s11590-011-0404-1

Sadiq Basha, S., Shahzad, N., & Jeyaraj, R. (2011). Common best proximity points: Global optimization of multi- objective functions. Applied Mathematics Letters, 24(6), 883-886. doi:10.1016/j.aml.2010.12.043

Sadiq Basha, S., & Veeramani, P. (2000). Best Proximity Pair Theorems for Multifunctions with Open Fibres. Journal of Approximation Theory, 103(1), 119-129. doi:10.1006/jath.1999.3415

Eldred, A. A., Kirk, W. A., & Veeramani, P. (2005). Proximal normal structure and relatively nonexpansive mappings. Studia Mathematica, 171(3), 283-293. doi:10.4064/sm171-3-5

Felicit, J. M., & Eldred, A. A. (2015). Best Proximity Points for Cyclical Contractive Mappings. Applied General Topology, 16(2), 119. doi:10.4995/agt.2015.3242

Vetro, C. (2010). Best proximity points: Convergence and existence theorems for -cyclic mappings. Nonlinear Analysis: Theory, Methods & Applications, 73(7), 2283-2291. doi:10.1016/j.na.2010.06.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem