- -

Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders

Show simple item record

Files in this item

dc.contributor.author Komal, Somayya es_ES
dc.contributor.author Kumam, Poom es_ES
dc.date.accessioned 2016-10-20T09:56:14Z
dc.date.available 2016-10-20T09:56:14Z
dc.date.issued 2016-10-03
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/72392
dc.description.abstract [EN] The purpose of this article is to establish the global optimization with partial orders for the pair of non-self mappings, by introducing new type of contractions like $\alpha$-ordered contractions and $\alpha$-ordered proximal contraction in the frame work of complete metric spaces. Also calculates some fixed point theorems with the help of these generalized contractions. In addition, established an example to show the validity of our main result. These results extended and unify many existing results in the literature. es_ES
dc.description.sponsorship Somayya Komal was supported by the Petchra Pra Jom Klao Doctoral Scholarship Academic for Ph.D. Program at KMUTT. This project was supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation Research Cluster (CLASSIC), Faculty of Science, KMUTT.
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Common best proximity point es_ES
dc.subject Global optimal approximate solution es_ES
dc.subject Proximally increasing mappings es_ES
dc.subject $\alpha$-ordered contractions es_ES
dc.subject $\alpha$-ordered proximal contraction es_ES
dc.subject $\alpha$-ordered proximal cyclic contraction es_ES
dc.title Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders es_ES
dc.type Artículo es_ES
dc.date.updated 2016-10-20T08:33:26Z
dc.identifier.doi 10.4995/agt.2016.5180
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Komal, S.; Kumam, P. (2016). Global optimization using $\alpha$-ordered proximal contractions in metric spaces with partial orders. Applied General Topology. 17(2):173-183. https://doi.org/10.4995/agt.2016.5180 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2016.5180 es_ES
dc.description.upvformatpinicio 173 es_ES
dc.description.upvformatpfin 183 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder King Mongkut's University of Technology Thonburi
dc.relation.references Abkar, A., & Gabeleh, M. (2011). Global Optimal Solutions of Noncyclic Mappings in Metric Spaces. Journal of Optimization Theory and Applications, 153(2), 298-305. doi:10.1007/s10957-011-9966-4 es_ES
dc.relation.references Al-Thagafi, M. A., & Shahzad, N. (2009). Best proximity pairs and equilibrium pairs for Kakutani multimaps. Nonlinear Analysis: Theory, Methods & Applications, 70(3), 1209-1216. doi:10.1016/j.na.2008.02.004 es_ES
dc.relation.references Al-Thagafi, M. A., & Shahzad, N. (2009). Convergence and existence results for best proximity points. Nonlinear Analysis: Theory, Methods & Applications, 70(10), 3665-3671. doi:10.1016/j.na.2008.07.022 es_ES
dc.relation.references Sadiq Basha, S. (2010). Extensions of Banach’s Contraction Principle. Numerical Functional Analysis and Optimization, 31(5), 569-576. doi:10.1080/01630563.2010.485713 es_ES
dc.relation.references Sadiq Basha, S. (2010). Best proximity points: global optimal approximate solutions. Journal of Global Optimization, 49(1), 15-21. doi:10.1007/s10898-009-9521-0 es_ES
dc.relation.references Sadiq Basha, S. (2011). Best proximity point theorems generalizing the contraction principle. Nonlinear Analysis: Theory, Methods & Applications, 74(17), 5844-5850. doi:10.1016/j.na.2011.04.017 es_ES
dc.relation.references Sadiq Basha, S. (2011). Common best proximity points: global minimization of multi-objective functions. Journal of Global Optimization, 54(2), 367-373. doi:10.1007/s10898-011-9760-8 es_ES
dc.relation.references Basha, S. S. (2012). Global optimization in metric spaces with partial orders. Optimization, 63(5), 817-825. doi:10.1080/02331934.2012.685238 es_ES
dc.relation.references Sadiq Basha, S., Shahzad, N., & Jeyaraj, R. (2011). Best proximity points: approximation and optimization. Optimization Letters, 7(1), 145-155. doi:10.1007/s11590-011-0404-1 es_ES
dc.relation.references Sadiq Basha, S., Shahzad, N., & Jeyaraj, R. (2011). Common best proximity points: Global optimization of multi- objective functions. Applied Mathematics Letters, 24(6), 883-886. doi:10.1016/j.aml.2010.12.043 es_ES
dc.relation.references Sadiq Basha, S., & Veeramani, P. (2000). Best Proximity Pair Theorems for Multifunctions with Open Fibres. Journal of Approximation Theory, 103(1), 119-129. doi:10.1006/jath.1999.3415 es_ES
dc.relation.references Eldred, A. A., Kirk, W. A., & Veeramani, P. (2005). Proximal normal structure and relatively nonexpansive mappings. Studia Mathematica, 171(3), 283-293. doi:10.4064/sm171-3-5 es_ES
dc.relation.references Felicit, J. M., & Eldred, A. A. (2015). Best Proximity Points for Cyclical Contractive Mappings. Applied General Topology, 16(2), 119. doi:10.4995/agt.2015.3242 es_ES
dc.relation.references Vetro, C. (2010). Best proximity points: Convergence and existence theorems for -cyclic mappings. Nonlinear Analysis: Theory, Methods & Applications, 73(7), 2283-2291. doi:10.1016/j.na.2010.06.008 es_ES


This item appears in the following Collection(s)

Show simple item record