- -

On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X)

Show full item record

Karamzadeh, OAS.; Namdari, M.; Soltanpour, S. (2015). On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X). Applied General Topology. 16(2):183-207. doi:10.4995/agt.2015.3445.

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72428

Files in this item

Item Metadata

Title: On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X)
Author:
Issued date:
Abstract:
[EN] Let $C_c(X)=\{f\in C(X) : |f(X)|\leq \aleph_0\}$, $C^F(X)=\{f\in C(X): |f(X)|<\infty\}$, and $L_c(X)=\{f\in C(X) : \overline{C_f}=X\}$, where $C_f$ is the union of all open subsets $U\subseteq X$ such that ...[+]
Subjects: Functionally countable space , Socle , Zero-dimensional space , Scattered space , Locally scattered space , $\aleph_0$-selfinjective
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2015.3445
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2015.3445
Type: Artículo

References

Azarpanah, F. (1997). Proceedings of the American Mathematical Society, 125(07), 2149-2155. doi:10.1090/s0002-9939-97-04086-0

Azarpanah, F. (1997). Proceedings of the American Mathematical Society, 125(07), 2149-2155. doi:10.1090/s0002-9939-97-04086-0

F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian. J. Pure Appl. Math. 12 (2002), 155-168. [+]
Azarpanah, F. (1997). Proceedings of the American Mathematical Society, 125(07), 2149-2155. doi:10.1090/s0002-9939-97-04086-0

Azarpanah, F. (1997). Proceedings of the American Mathematical Society, 125(07), 2149-2155. doi:10.1090/s0002-9939-97-04086-0

F. Azarpanah and O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian. J. Pure Appl. Math. 12 (2002), 155-168.

Azarpanah, F., Karamzadeh, O. A. S., & Rahmati, S. (2008). C(X) vs. C(X) modulo its socle. Colloquium Mathematicum, 111(2), 315-336. doi:10.4064/cm111-2-9

Azarpanah, F., Karamzadeh, O. A. S., & Rahmati, S. (2008). C(X) vs. C(X) modulo its socle. Colloquium Mathematicum, 111(2), 315-336. doi:10.4064/cm111-2-9

Bhattacharjee, P., Knox, M. L., & McGovern, W. W. (2014). The classical ring of quotients of $C_c(X)$. Applied General Topology, 15(2), 147. doi:10.4995/agt.2014.3181

Bhattacharjee, P., Knox, M. L., & McGovern, W. W. (2014). The classical ring of quotients of $C_c(X)$. Applied General Topology, 15(2), 147. doi:10.4995/agt.2014.3181

Dovgoshey, O., Martio, O., Ryazanov, V., & Vuorinen, M. (2006). The Cantor function. Expositiones Mathematicae, 24(1), 1-37. doi:10.1016/j.exmath.2005.05.002

Dovgoshey, O., Martio, O., Ryazanov, V., & Vuorinen, M. (2006). The Cantor function. Expositiones Mathematicae, 24(1), 1-37. doi:10.1016/j.exmath.2005.05.002

Dube, T. (2010). Contracting the Socle in Rings of Continuous Functions. Rendiconti del Seminario Matematico della Università di Padova, 123, 37-53. doi:10.4171/rsmup/123-2

Dube, T. (2010). Contracting the Socle in Rings of Continuous Functions. Rendiconti del Seminario Matematico della Università di Padova, 123, 37-53. doi:10.4171/rsmup/123-2

R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.

Estaji, A. A., & Karamzadeh, O. A. S. (2003). OnC(X) Modulo its Socle. Communications in Algebra, 31(4), 1561-1571. doi:10.1081/agb-120018497

Estaji, A. A., & Karamzadeh, O. A. S. (2003). OnC(X) Modulo its Socle. Communications in Algebra, 31(4), 1561-1571. doi:10.1081/agb-120018497

Ghadermazi, M., Karamzadeh, O. A. S., & Namdari, M. (2013). On the Functionally Countable Subalgebra of $C(X)$. Rendiconti del Seminario Matematico della Università di Padova, 129, 47-69. doi:10.4171/rsmup/129-4

Ghadermazi, M., Karamzadeh, O. A. S., & Namdari, M. (2013). On the Functionally Countable Subalgebra of $C(X)$. Rendiconti del Seminario Matematico della Università di Padova, 129, 47-69. doi:10.4171/rsmup/129-4

S. G. Ghasemzadeh, O. A. S. Karamzadeh and M. Namdari, The super socle of the ring of continuous functions, Mathematica Slovaka, to appear.

J. Hart and K. Kunen, Locally constant functions, Fund. Math. 150 (1996), 67-96.

M. Henriksen, R. Raphael and R. G. Woods, SP-scattered spaces; a new generalization of scattered spaces, Comment. Math. Univ. Carolin 48, no. 3 (2007), 487-505.

Karamzadeh, O. A. S. (1997). On a question of matlis. Communications in Algebra, 25(9), 2717-2726. doi:10.1080/00927879708826017

Karamzadeh, O. A. S. (1997). On a question of matlis. Communications in Algebra, 25(9), 2717-2726. doi:10.1080/00927879708826017

Karamzadeh, O. A. S., & Koochakpoor, A. A. (1999). Onℵ- self-injectivity of strongly regular rings. Communications in Algebra, 27(4), 1501-1513. doi:10.1080/00927879908826510

Karamzadeh, O. A. S., & Koochakpoor, A. A. (1999). Onℵ- self-injectivity of strongly regular rings. Communications in Algebra, 27(4), 1501-1513. doi:10.1080/00927879908826510

Karamzadeh, O., Namdari, M., & Siavoshi, M. (2013). A note on λ-compact spaces. Mathematica Slovaca, 63(6). doi:10.2478/s12175-013-0177-3

Karamzadeh, O., Namdari, M., & Siavoshi, M. (2013). A note on λ-compact spaces. Mathematica Slovaca, 63(6). doi:10.2478/s12175-013-0177-3

Karamzadeh, O. A. S., & Rostami, M. (1985). On the Intrinsic Topology and Some Related Ideals of C(X). Proceedings of the American Mathematical Society, 93(1), 179. doi:10.2307/2044578

R. Levy and M. D. Rice, Normal P-spaces and the $G_delta$-topology, Colloq. Math. 47 (1981), 227-240.

M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66.

M. Namdari and A. Veisi, The subalgebra of $C_c(X)$ consisting of elements with countable image versus C(X) with respect to their rings of quotients, Far East J. Math. Sci. (FJMS), 59 (2011), 201-212.

A. Pelczynski and Z. Semadeni, Spaces of continuous functions (III), Studia Mathematica 18 (1959), 211-222.

Rudin, M. E., & Rudin, W. (1995). Continuous Functions That Are Locally Constant on Dense Sets. Journal of Functional Analysis, 133(1), 129-137. doi:10.1006/jfan.1995.1121

Rudin, M. E., & Rudin, W. (1995). Continuous Functions That Are Locally Constant on Dense Sets. Journal of Functional Analysis, 133(1), 129-137. doi:10.1006/jfan.1995.1121

Rudin, W. (1957). Continuous functions on compact spaces without perfect subsets. Proceedings of the American Mathematical Society, 8(1), 39-39. doi:10.1090/s0002-9939-1957-0085475-7

Rudin, W. (1957). Continuous functions on compact spaces without perfect subsets. Proceedings of the American Mathematical Society, 8(1), 39-39. doi:10.1090/s0002-9939-1957-0085475-7

Rudd, D. (1970). On two sum theorems for ideals of $C(X)$. The Michigan Mathematical Journal, 17(2), 139-141. doi:10.1307/mmj/1029000423

Rudd, D. (1970). On two sum theorems for ideals of $C(X)$. The Michigan Mathematical Journal, 17(2), 139-141. doi:10.1307/mmj/1029000423

[-]

This item appears in the following Collection(s)

Show full item record