- -

On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Karamzadeh, O. A. S. es_ES
dc.contributor.author Namdari, M. es_ES
dc.contributor.author Soltanpour, S. es_ES
dc.date.accessioned 2016-10-20T13:31:47Z
dc.date.available 2016-10-20T13:31:47Z
dc.date.issued 2015-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/72428
dc.description.abstract [EN] Let $C_c(X)=\{f\in C(X) : |f(X)|\leq \aleph_0\}$, $C^F(X)=\{f\in C(X): |f(X)|<\infty\}$, and $L_c(X)=\{f\in C(X) : \overline{C_f}=X\}$, where $C_f$ is the union of all open subsets $U\subseteq X$ such that $|f(U)|\leq\aleph_0$, and $C_F(X)$ be the socle of $C(X)$ (i.e., the sum of minimal ideals of $C(X)$). It is shown that if $X$ is a locally compact space, then $L_c(X)=C(X)$ if and only if $X$ is locally scattered.We observe that $L_c(X)$ enjoys most of the important properties which are shared by $C(X)$ and $C_c(X)$. Spaces $X$ such that $L_c(X)$ is regular (von Neumann) are characterized. Similarly to $C(X)$ and $C_c(X)$, it is shown that $L_c(X)$ is a regular ring if and only if it is $\aleph_0$-selfinjective.We also determine spaces $X$ such that ${\rm Soc}{\big(}L_c(X){\big)}=C_F(X)$ (resp., ${\rm Soc}{\big(}L_c(X){\big)}={\rm Soc}{\big(}C_c(X){\big)}$). It is proved that if $C_F(X)$ is a maximal ideal in $L_c(X)$, then $C_c(X)=C^F(X)=L_c(X)\cong \prod\limits_{i=1}^n R_i$, where $R_i=\mathbb R$ for each $i$, and $X$ has a unique infinite clopen connected subset. The converse of the latter result is also given. The spaces $X$ for which $C_F(X)$ is a prime ideal in $L_c(X)$ are characterized and consequently for these spaces, we infer that $L_c(X)$ can not be isomorphic to any $C(Y)$. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Functionally countable space es_ES
dc.subject Socle es_ES
dc.subject Zero-dimensional space es_ES
dc.subject Scattered space es_ES
dc.subject Locally scattered space es_ES
dc.subject $\aleph_0$-selfinjective es_ES
dc.title On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X) es_ES
dc.type Artículo es_ES
dc.date.updated 2016-10-20T12:27:36Z
dc.identifier.doi 10.4995/agt.2015.3445
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Karamzadeh, OAS.; Namdari, M.; Soltanpour, S. (2015). On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X). Applied General Topology. 16(2):183-207. https://doi.org/10.4995/agt.2015.3445 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2015.3445 es_ES
dc.description.upvformatpinicio 183 es_ES
dc.description.upvformatpfin 207 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 2
dc.identifier.eissn 1989-4147


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem