Mostrar el registro sencillo del ítem
dc.contributor.author | Karamzadeh, O. A. S. | es_ES |
dc.contributor.author | Namdari, M. | es_ES |
dc.contributor.author | Soltanpour, S. | es_ES |
dc.date.accessioned | 2016-10-20T13:31:47Z | |
dc.date.available | 2016-10-20T13:31:47Z | |
dc.date.issued | 2015-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/72428 | |
dc.description.abstract | [EN] Let $C_c(X)=\{f\in C(X) : |f(X)|\leq \aleph_0\}$, $C^F(X)=\{f\in C(X): |f(X)|<\infty\}$, and $L_c(X)=\{f\in C(X) : \overline{C_f}=X\}$, where $C_f$ is the union of all open subsets $U\subseteq X$ such that $|f(U)|\leq\aleph_0$, and $C_F(X)$ be the socle of $C(X)$ (i.e., the sum of minimal ideals of $C(X)$). It is shown that if $X$ is a locally compact space, then $L_c(X)=C(X)$ if and only if $X$ is locally scattered.We observe that $L_c(X)$ enjoys most of the important properties which are shared by $C(X)$ and $C_c(X)$. Spaces $X$ such that $L_c(X)$ is regular (von Neumann) are characterized. Similarly to $C(X)$ and $C_c(X)$, it is shown that $L_c(X)$ is a regular ring if and only if it is $\aleph_0$-selfinjective.We also determine spaces $X$ such that ${\rm Soc}{\big(}L_c(X){\big)}=C_F(X)$ (resp., ${\rm Soc}{\big(}L_c(X){\big)}={\rm Soc}{\big(}C_c(X){\big)}$). It is proved that if $C_F(X)$ is a maximal ideal in $L_c(X)$, then $C_c(X)=C^F(X)=L_c(X)\cong \prod\limits_{i=1}^n R_i$, where $R_i=\mathbb R$ for each $i$, and $X$ has a unique infinite clopen connected subset. The converse of the latter result is also given. The spaces $X$ for which $C_F(X)$ is a prime ideal in $L_c(X)$ are characterized and consequently for these spaces, we infer that $L_c(X)$ can not be isomorphic to any $C(Y)$. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Functionally countable space | es_ES |
dc.subject | Socle | es_ES |
dc.subject | Zero-dimensional space | es_ES |
dc.subject | Scattered space | es_ES |
dc.subject | Locally scattered space | es_ES |
dc.subject | $\aleph_0$-selfinjective | es_ES |
dc.title | On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X) | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-10-20T12:27:36Z | |
dc.identifier.doi | 10.4995/agt.2015.3445 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Karamzadeh, OAS.; Namdari, M.; Soltanpour, S. (2015). On the locally functionally countable subalgebra of C(X) on locally functionally countable subalgebra of C(X). Applied General Topology. 16(2):183-207. https://doi.org/10.4995/agt.2015.3445 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2015.3445 | es_ES |
dc.description.upvformatpinicio | 183 | es_ES |
dc.description.upvformatpfin | 207 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 16 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 |