- -

Static and Dynamic Behavior of Transitions between Different Railway Track Typologies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Static and Dynamic Behavior of Transitions between Different Railway Track Typologies

Mostrar el registro completo del ítem

Real Herraiz, TP.; Zamorano, C.; Hernández Gracia, C.; García, J.; Real Herráiz, JI. (2016). Static and Dynamic Behavior of Transitions between Different Railway Track Typologies. KSCE Journal of Civil Engineering. 20(4):1356-1364. doi:10.1007/s12205-015-0635-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72677

Ficheros en el ítem

Metadatos del ítem

Título: Static and Dynamic Behavior of Transitions between Different Railway Track Typologies
Autor: Real Herraiz, Teresa Pilar Zamorano, C. Hernández Gracia, César García, J.A. Real Herráiz, Julia Irene
Entidad UPV: Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures
Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Fecha difusión:
Resumen:
[EN] A railway track stretch comprising three different track typologies (i.e., ballasted track, asphalt slab track and concrete slab track) has been modeled using a three-dimensional Finite Elements model, which has been ...[+]
Palabras clave: Railway transition , FEM , Railway vibrations , Track vertical stiffness , Asphalt slab track
Derechos de uso: Cerrado
Fuente:
KSCE Journal of Civil Engineering. (issn: 1226-7988 ) (eissn: 1976-3808 )
DOI: 10.1007/s12205-015-0635-2
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s12205-015-0635-2
Agradecimientos:
This research is included within the Research and Development project BITUTRAN supported by the CDTI (Center for the Industrial Technological Development) of the Spanish Ministry of Economy and Competitiveness. The ...[+]
Tipo: Artículo

References

Ali Zhakeri, J. and Ghorbani, V. (2011). “Investigation on dynamic behavior of railway track in transition zone.” Journal of Mechanical Science and Technology, Vol. 25 No. 2, pp. 287–292, DOI: 10.1007/s12206-010-1202-x .

Coelho, B., Hölscher, P., Priest, J. P., and Barends, F. (2011). “An assessment of transition zone performance.” Journal of Rail and Rapid Transit, Vol. 225, No. 2, pp. 129–139, DOI: 10.1177/09544097JRRT389 .

Costa, P. A., Calçada, R., and Cardoso, A. (2012). “Ballast mats for the reduction of railway traffic vibrations. Numerical study.” Soil Dynamics and Earthquake Engineering, Vol. 42, pp. 137–150, DOI: 10.1016/j.soildyn.2012.06.014 . [+]
Ali Zhakeri, J. and Ghorbani, V. (2011). “Investigation on dynamic behavior of railway track in transition zone.” Journal of Mechanical Science and Technology, Vol. 25 No. 2, pp. 287–292, DOI: 10.1007/s12206-010-1202-x .

Coelho, B., Hölscher, P., Priest, J. P., and Barends, F. (2011). “An assessment of transition zone performance.” Journal of Rail and Rapid Transit, Vol. 225, No. 2, pp. 129–139, DOI: 10.1177/09544097JRRT389 .

Costa, P. A., Calçada, R., and Cardoso, A. (2012). “Ballast mats for the reduction of railway traffic vibrations. Numerical study.” Soil Dynamics and Earthquake Engineering, Vol. 42, pp. 137–150, DOI: 10.1016/j.soildyn.2012.06.014 .

Fastenrath, F. (1981). Railroad Track: Theory and practice: material properties, cross sections, welding and treatment, F. Ungar Pub. Co., New York, N.Y.

Fernández, J. (2014). Numerical study in time domain of the vibrations induced by railway traffic in tunnels: Geotechnical analysis, experimental validation and solutions proposal, PhD Thesis, University of La Coruña, Spain. (In Spanish).

Ferrara, R., Leonardi, G., and Jourdan, F. (2012). “Numerical Modelling of Train Induced Vibrations.” Proc. 5th International Congress on Sustainability of Road Infrastructures. Procedia-Social and Behavioral Sciences, Rome, pp.155–165, DOI: 10.1016/j.sbspro.2012.09.869 .

Gallego Giner, I., Vieira Chaves, E. W., López Pita, A., and Rivas Álvarez, A. (2012). “Design of embankment-structure transitions for railway infrastructure.” Transport, Vol. 165, No. 1, pp. 27–37, DOI: 10.1680/tran.8.00037 .

Giannakos, K. and Tsoukantas, S. (2012). “Transition zone between ballastless and ballasted track: Influence of changing stiffness on acting forces.” Transport Research Arena 2012. Procedia-Social and Behavioral Sciences, Vol. 48, pp. 3548–3557, DOI: 10.1016/j.sbspro.2012.06.1318 .

Jin, X. S., Wen, Z. F., Wang, K. Y., Zhou, Z. R., Liu, Q. Y., and Li, C. H. (2006). “Three-dimensional train-track model for study of rail corrugation.” Journal of Sound and Vibration, Vol. 293, Nos. 3–5, pp. 830–855, DOI: 10.1016/j.jsv.2005.12.013 .

Kerr, A. and Moroney, B. (1995). “Track transition problems and remedies.” American Railway Engineering Association, Vol. 742, pp. 267–297.

Lei, X. and Zhang, B. (2011). “Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements.” Journal of Transportation Engineering, Vol. 137, No. 4, pp. 227–240, DOI: 10.1061/(ASCE)TE.1943-5436.0000207 .

Li, D. and Davis, D. (2005). “Transition of railroad bridge approaches.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 11, pp. 1392–1398, DOI: 10.1061/(ASCE)1090-0241(2005)131:11(1392) .

Real, J., Galisteo, A., Real, T., and Zamorano, C. (2012). “Study of wave barriers design for the mitigation of railway ground vibrations.” Journal of Vibroengineering, Vol. 14, No. 1, pp. 408–422.

Real, J., Zamorano, C., Hernández, C., Comendador, R., and Real, T. (2014). “Computational considerations of 3-D finite element method models of railway vibration prediction in ballasted tracks.” Journal of Vibroengineering, Vol. 16, No. 4, pp. 1709–1722.

Shan, Y., Albers, B., and Savidis, S. (2013). “Influence of the different transtion zones on the dynamic response of track-subgrade systems.” Computers and Geotechnics, Vol. 48, pp. 21–28, DOI: 10.1016/j.compgeo.2012.09.006 .

Shi, J., Burrow, M., Chan, A. H., and Wang, Y. J. (2012). “Measurements and simulation of the dynamic responses of a bridge-embankment transition zone below a heavy haul railway line.” Journal of Rail and Rapid Transit, Vol. 227, No. 3, pp. 254–268, DOI: 10.1177/0954409712460979 .

Varandas, J., Hölscher, P., and Silva, M. (2011). “Dynamic behaviour of railway tracks on transtion zones.” Computers and Structures, Vol. 89, Nos. 13–14 pp. 1468–1479, DOI: 10.1016/j.compstruc.2011.02.013 .

Witt, S. (2008). The influence of under sleeper pads on railway track dynamics, Linköping University, Linköping.

Woodward, P. K., El Kacimi, A., Laghrouche, O., Medero, G., and Banimahd, M. (2012). “Application of polyurethane geocomposites to help maintain track geometry for high-speed ballasted railway tracks.” Journal of Zhejiang University-Science A, Vol. 13, No. 11, pp. 836–849, DOI: 10.1631/jzus.A12ISGT3 .

Xia, J. H. Wei, Q. C. Yin, S., and You, L. X. (2009). “Dynamic performance evaluation of bridge-subbgrade transition of Shuohuang Railway.” Proc. of 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha City, Vol. 2, pp. 58–61, DOI: 10.1109/ICMTMA.2010.605 .

Xin, T. and Gao, L. (2011). “Reducing slab track vibration into bridge using elastic materials in high speed railway.” Journal of Sound and Vibration, Vol. 330, No. 10, pp. 2237–2248, DOI: 10.1016/j.jsv.2010.11.023 .

Yang, L., Powrie, W., and Priest, J. (2009). “Dynamic stress analysis of a ballasted railway track bed during train passage.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 5, pp. 680–689, DOI: 10.1061/_ASCE_GT.1943-5606.0000032 .

Zhang, B., Zhao, X., and Liu, Q. (2013). “Calculation and evaluation on dynamic characteristics of bridge-subgrade transition section in speed-up railway line.” Applied Mechanics and Materials, Vols. 256–259, pp. 1821–1825, DOI: 10.4028/www.scientific.net/AMM.256-259.1821 .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem