- -

Static and Dynamic Behavior of Transitions between Different Railway Track Typologies

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Static and Dynamic Behavior of Transitions between Different Railway Track Typologies

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Real Herraiz, Teresa Pilar es_ES
dc.contributor.author Zamorano, C. es_ES
dc.contributor.author Hernández Gracia, César es_ES
dc.contributor.author García, J.A. es_ES
dc.contributor.author Real Herráiz, Julia Irene es_ES
dc.date.accessioned 2016-10-24T13:38:37Z
dc.date.available 2016-10-24T13:38:37Z
dc.date.issued 2016-05
dc.identifier.issn 1226-7988
dc.identifier.uri http://hdl.handle.net/10251/72677
dc.description.abstract [EN] A railway track stretch comprising three different track typologies (i.e., ballasted track, asphalt slab track and concrete slab track) has been modeled using a three-dimensional Finite Elements model, which has been calibrated and validated using real acceleration records. In this model, two different analyses have been run: a static analysis to assess the stiffness evolution and a dynamic analysis to calculate the accelerations induced by the train loads along the transition zones. These analyses have been used to assess the performance of three different techniques existing in the literature to improve the structural behavior of the track in the transition areas: the variation of the stiffness of the elastomers, the implementation of additional rails and the use of resilient mats. Results have demonstrated that these techniques perform generally better in the track vertical stiffness transition between the concrete and asphalt slab tracks while the dynamic response is not significantly altered in any scenario. es_ES
dc.description.sponsorship This research is included within the Research and Development project BITUTRAN supported by the CDTI (Center for the Industrial Technological Development) of the Spanish Ministry of Economy and Competitiveness. The contribution of EIGE (Infrastructure Authority of the Regional Government of Valencia) and FGV (Railways of the Valencia Region) during the development and the implementation of the project must be acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof KSCE Journal of Civil Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Railway transition es_ES
dc.subject FEM es_ES
dc.subject Railway vibrations es_ES
dc.subject Track vertical stiffness es_ES
dc.subject Asphalt slab track es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Static and Dynamic Behavior of Transitions between Different Railway Track Typologies es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12205-015-0635-2
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.description.bibliographicCitation Real Herraiz, TP.; Zamorano, C.; Hernández Gracia, C.; García, J.; Real Herráiz, JI. (2016). Static and Dynamic Behavior of Transitions between Different Railway Track Typologies. KSCE Journal of Civil Engineering. 20(4):1356-1364. doi:10.1007/s12205-015-0635-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s12205-015-0635-2 es_ES
dc.description.upvformatpinicio 1356 es_ES
dc.description.upvformatpfin 1364 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 307238 es_ES
dc.identifier.eissn 1976-3808
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Ali Zhakeri, J. and Ghorbani, V. (2011). “Investigation on dynamic behavior of railway track in transition zone.” Journal of Mechanical Science and Technology, Vol. 25 No. 2, pp. 287–292, DOI: 10.1007/s12206-010-1202-x . es_ES
dc.description.references Coelho, B., Hölscher, P., Priest, J. P., and Barends, F. (2011). “An assessment of transition zone performance.” Journal of Rail and Rapid Transit, Vol. 225, No. 2, pp. 129–139, DOI: 10.1177/09544097JRRT389 . es_ES
dc.description.references Costa, P. A., Calçada, R., and Cardoso, A. (2012). “Ballast mats for the reduction of railway traffic vibrations. Numerical study.” Soil Dynamics and Earthquake Engineering, Vol. 42, pp. 137–150, DOI: 10.1016/j.soildyn.2012.06.014 . es_ES
dc.description.references Fastenrath, F. (1981). Railroad Track: Theory and practice: material properties, cross sections, welding and treatment, F. Ungar Pub. Co., New York, N.Y. es_ES
dc.description.references Fernández, J. (2014). Numerical study in time domain of the vibrations induced by railway traffic in tunnels: Geotechnical analysis, experimental validation and solutions proposal, PhD Thesis, University of La Coruña, Spain. (In Spanish). es_ES
dc.description.references Ferrara, R., Leonardi, G., and Jourdan, F. (2012). “Numerical Modelling of Train Induced Vibrations.” Proc. 5th International Congress on Sustainability of Road Infrastructures. Procedia-Social and Behavioral Sciences, Rome, pp.155–165, DOI: 10.1016/j.sbspro.2012.09.869 . es_ES
dc.description.references Gallego Giner, I., Vieira Chaves, E. W., López Pita, A., and Rivas Álvarez, A. (2012). “Design of embankment-structure transitions for railway infrastructure.” Transport, Vol. 165, No. 1, pp. 27–37, DOI: 10.1680/tran.8.00037 . es_ES
dc.description.references Giannakos, K. and Tsoukantas, S. (2012). “Transition zone between ballastless and ballasted track: Influence of changing stiffness on acting forces.” Transport Research Arena 2012. Procedia-Social and Behavioral Sciences, Vol. 48, pp. 3548–3557, DOI: 10.1016/j.sbspro.2012.06.1318 . es_ES
dc.description.references Jin, X. S., Wen, Z. F., Wang, K. Y., Zhou, Z. R., Liu, Q. Y., and Li, C. H. (2006). “Three-dimensional train-track model for study of rail corrugation.” Journal of Sound and Vibration, Vol. 293, Nos. 3–5, pp. 830–855, DOI: 10.1016/j.jsv.2005.12.013 . es_ES
dc.description.references Kerr, A. and Moroney, B. (1995). “Track transition problems and remedies.” American Railway Engineering Association, Vol. 742, pp. 267–297. es_ES
dc.description.references Lei, X. and Zhang, B. (2011). “Analysis of dynamic behavior for slab track of high-speed railway based on vehicle and track elements.” Journal of Transportation Engineering, Vol. 137, No. 4, pp. 227–240, DOI: 10.1061/(ASCE)TE.1943-5436.0000207 . es_ES
dc.description.references Li, D. and Davis, D. (2005). “Transition of railroad bridge approaches.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 11, pp. 1392–1398, DOI: 10.1061/(ASCE)1090-0241(2005)131:11(1392) . es_ES
dc.description.references Real, J., Galisteo, A., Real, T., and Zamorano, C. (2012). “Study of wave barriers design for the mitigation of railway ground vibrations.” Journal of Vibroengineering, Vol. 14, No. 1, pp. 408–422. es_ES
dc.description.references Real, J., Zamorano, C., Hernández, C., Comendador, R., and Real, T. (2014). “Computational considerations of 3-D finite element method models of railway vibration prediction in ballasted tracks.” Journal of Vibroengineering, Vol. 16, No. 4, pp. 1709–1722. es_ES
dc.description.references Shan, Y., Albers, B., and Savidis, S. (2013). “Influence of the different transtion zones on the dynamic response of track-subgrade systems.” Computers and Geotechnics, Vol. 48, pp. 21–28, DOI: 10.1016/j.compgeo.2012.09.006 . es_ES
dc.description.references Shi, J., Burrow, M., Chan, A. H., and Wang, Y. J. (2012). “Measurements and simulation of the dynamic responses of a bridge-embankment transition zone below a heavy haul railway line.” Journal of Rail and Rapid Transit, Vol. 227, No. 3, pp. 254–268, DOI: 10.1177/0954409712460979 . es_ES
dc.description.references Varandas, J., Hölscher, P., and Silva, M. (2011). “Dynamic behaviour of railway tracks on transtion zones.” Computers and Structures, Vol. 89, Nos. 13–14 pp. 1468–1479, DOI: 10.1016/j.compstruc.2011.02.013 . es_ES
dc.description.references Witt, S. (2008). The influence of under sleeper pads on railway track dynamics, Linköping University, Linköping. es_ES
dc.description.references Woodward, P. K., El Kacimi, A., Laghrouche, O., Medero, G., and Banimahd, M. (2012). “Application of polyurethane geocomposites to help maintain track geometry for high-speed ballasted railway tracks.” Journal of Zhejiang University-Science A, Vol. 13, No. 11, pp. 836–849, DOI: 10.1631/jzus.A12ISGT3 . es_ES
dc.description.references Xia, J. H. Wei, Q. C. Yin, S., and You, L. X. (2009). “Dynamic performance evaluation of bridge-subbgrade transition of Shuohuang Railway.” Proc. of 2010 International Conference on Measuring Technology and Mechatronics Automation, Changsha City, Vol. 2, pp. 58–61, DOI: 10.1109/ICMTMA.2010.605 . es_ES
dc.description.references Xin, T. and Gao, L. (2011). “Reducing slab track vibration into bridge using elastic materials in high speed railway.” Journal of Sound and Vibration, Vol. 330, No. 10, pp. 2237–2248, DOI: 10.1016/j.jsv.2010.11.023 . es_ES
dc.description.references Yang, L., Powrie, W., and Priest, J. (2009). “Dynamic stress analysis of a ballasted railway track bed during train passage.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 5, pp. 680–689, DOI: 10.1061/_ASCE_GT.1943-5606.0000032 . es_ES
dc.description.references Zhang, B., Zhao, X., and Liu, Q. (2013). “Calculation and evaluation on dynamic characteristics of bridge-subgrade transition section in speed-up railway line.” Applied Mechanics and Materials, Vols. 256–259, pp. 1821–1825, DOI: 10.4028/www.scientific.net/AMM.256-259.1821 . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem