Crozier, A., Lean, M. E. J., McDonald, M. S., & Black, C. (1997). Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 45(3), 590-595. doi:10.1021/jf960339y
Beesk, N., Perner, H., Schwarz, D., George, E., Kroh, L. W., & Rohn, S. (2010). Distribution of quercetin-3,4′-O-diglucoside, quercetin-4′-O-monoglucoside, and quercetin in different parts of the onion bulb (Allium cepa L.) influenced by genotype. Food Chemistry, 122(3), 566-571. doi:10.1016/j.foodchem.2010.03.011
Moskaug, J. (2004). Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mechanisms of Ageing and Development, 125(4), 315-324. doi:10.1016/j.mad.2004.01.007
[+]
Crozier, A., Lean, M. E. J., McDonald, M. S., & Black, C. (1997). Quantitative Analysis of the Flavonoid Content of Commercial Tomatoes, Onions, Lettuce, and Celery. Journal of Agricultural and Food Chemistry, 45(3), 590-595. doi:10.1021/jf960339y
Beesk, N., Perner, H., Schwarz, D., George, E., Kroh, L. W., & Rohn, S. (2010). Distribution of quercetin-3,4′-O-diglucoside, quercetin-4′-O-monoglucoside, and quercetin in different parts of the onion bulb (Allium cepa L.) influenced by genotype. Food Chemistry, 122(3), 566-571. doi:10.1016/j.foodchem.2010.03.011
Moskaug, J. (2004). Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mechanisms of Ageing and Development, 125(4), 315-324. doi:10.1016/j.mad.2004.01.007
Prakash, D., Singh, B. N., & Upadhyay, G. (2007). Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry, 102(4), 1389-1393. doi:10.1016/j.foodchem.2006.06.063
Gökçe, A. F., Kaya, C., Serçe, S., & Özgen, M. (2010). Effect of scale color on the antioxidant capacity of onions. Scientia Horticulturae, 123(4), 431-435. doi:10.1016/j.scienta.2009.11.007
Pérez-Gregorio, R. M., García-Falcón, M. S., Simal-Gándara, J., Rodrigues, A. S., & Almeida, D. P. F. (2010). Identification and quantification of flavonoids in traditional cultivars of red and white onions at harvest. Journal of Food Composition and Analysis, 23(6), 592-598. doi:10.1016/j.jfca.2009.08.013
Van Buggenhout, S., Alminger, M., Lemmens, L., Colle, I., Knockaert, G., Moelants, K., … Hendrickx, M. (2010). In vitro approaches to estimate the effect of food processing on carotenoid bioavailability need thorough understanding of process induced microstructural changes. Trends in Food Science & Technology, 21(12), 607-618. doi:10.1016/j.tifs.2010.09.010
Hollman, P. C. ., van Trijp, J. M. ., Buysman, M. N. C. ., v.d. Gaag, M. S., Mengelers, M. J. ., de Vries, J. H. ., & Katan, M. B. (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Letters, 418(1-2), 152-156. doi:10.1016/s0014-5793(97)01367-7
Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering, 67(1-2), 95-112. doi:10.1016/j.jfoodeng.2004.05.066
Ferrari, G., Maresca, P., & Ciccarone, R. (2010). The application of high hydrostatic pressure for the stabilization of functional foods: Pomegranate juice. Journal of Food Engineering, 100(2), 245-253. doi:10.1016/j.jfoodeng.2010.04.006
McInerney, J. K., Seccafien, C. A., Stewart, C. M., & Bird, A. R. (2007). Effects of high pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innovative Food Science & Emerging Technologies, 8(4), 543-548. doi:10.1016/j.ifset.2007.04.005
Plaza, L., Colina, C., Ancos, B. de, Sánchez-Moreno, C., & Pilar Cano, M. (2012). Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chemistry, 130(3), 591-597. doi:10.1016/j.foodchem.2011.07.080
Roldán-Marín, E., Sánchez-Moreno, C., Lloría, R., de Ancos, B., & Cano, M. P. (2009). Onion high-pressure processing: Flavonol content and antioxidant activity. LWT - Food Science and Technology, 42(4), 835-841. doi:10.1016/j.lwt.2008.11.013
Sánchez-Moreno, C., de Ancos, B., Plaza, L., Elez-Martínez, P., & Cano, M. P. (2009). Nutritional Approaches and Health-Related Properties of Plant Foods Processed by High Pressure and Pulsed Electric Fields. Critical Reviews in Food Science and Nutrition, 49(6), 552-576. doi:10.1080/10408390802145526
Briones-Labarca, V., Venegas-Cubillos, G., Ortiz-Portilla, S., Chacana-Ojeda, M., & Maureira, H. (2011). Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chemistry, 128(2), 520-529. doi:10.1016/j.foodchem.2011.03.074
Jun, X., Deji, S., Ye, L., & Rui, Z. (2011). Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control, 22(8), 1473-1476. doi:10.1016/j.foodcont.2011.03.008
Vázquez-Gutiérrez, J. L., Quiles, A., Hernando, I., & Pérez-Munuera, I. (2011). Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharvest Biology and Technology, 61(2-3), 137-144. doi:10.1016/j.postharvbio.2011.03.008
Vázquez-Gutiérrez, J. L., Hernández-Carrión, M., Quiles, A., Hernando, I., & Pérez-Munuera, I. (2012). Impact of high hydrostatic pressures on the structure, diffusion of soluble compounds and textural properties of persimmon ‘Rojo Brillante’. Food Research International, 47(2), 218-222. doi:10.1016/j.foodres.2011.06.024
Butz, P., Koller, W. D., Tauscher, B., & Wolf, S. (1994). Ultra-High Pressure Processing of Onions: Chemical and Sensory Changes. LWT - Food Science and Technology, 27(5), 463-467. doi:10.1006/fstl.1994.1093
Gonzalez, M. E., Jernstedt, J. A., Slaughter, D. C., & Barrett, D. M. (2010). Microscopic Quantification of Cell Integrity in Raw and Processed Onion Parenchyma Cells. Journal of Food Science, 75(7), E402-E408. doi:10.1111/j.1750-3841.2010.01764.x
Gonzalez, M. E., Barrett, D. M., McCarthy, M. J., Vergeldt, F. J., Gerkema, E., Matser, A. M., & Van As, H. (2010). 1H-NMR Study of the Impact of High Pressure and Thermal Processing on Cell Membrane Integrity of Onions. Journal of Food Science, 75(7), E417-E425. doi:10.1111/j.1750-3841.2010.01766.x
Plaza, L., Crespo, I., de Pascual-Teresa, S., de Ancos, B., Sánchez-Moreno, C., Muñoz, M., & Cano, M. P. (2011). Impact of minimal processing on orange bioactive compounds during refrigerated storage. Food Chemistry, 124(2), 646-651. doi:10.1016/j.foodchem.2010.06.089
Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D. A., & Barrow, C. J. (2006). A Simple 96-Well Microplate Method for Estimation of Total Polyphenol Content in Seaweeds. Journal of Applied Phycology, 18(3-5), 445-450. doi:10.1007/s10811-006-9048-4
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi:10.1016/s0023-6438(95)80008-5
Hidalgo, M., Sánchez-Moreno, C., & de Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chemistry, 121(3), 691-696. doi:10.1016/j.foodchem.2009.12.097
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of «Antioxidant Power»: The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. doi:10.1006/abio.1996.0292
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. doi:10.1016/s0891-5849(98)00315-3
Neri, L., Hernando, I. H., Pérez-Munuera, I., Sacchetti, G., & Pittia, P. (2010). Effect of Blanching in Water and Sugar Solutions on Texture and Microstructure of Sliced Carrots. Journal of Food Science, 76(1), E23-E30. doi:10.1111/j.1750-3841.2010.01906.x
Patras, A., Brunton, N. P., Da Pieve, S., & Butler, F. (2009). Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies, 10(3), 308-313. doi:10.1016/j.ifset.2008.12.004
Franke, A. A., Custer, L. J., Arakaki, C., & Murphy, S. P. (2004). Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. Journal of Food Composition and Analysis, 17(1), 1-35. doi:10.1016/s0889-1575(03)00066-8
Krebbers, B., Matser, A. ., Koets, M., & Van den Berg, R. . (2002). Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering, 54(1), 27-33. doi:10.1016/s0260-8774(01)00182-0
Plaza, L., Sánchez-Moreno, C., Elez-Martínez, P., de Ancos, B., Martín-Belloso, O., & Cano, M. P. (2006). Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. European Food Research and Technology, 223(4), 487-493. doi:10.1007/s00217-005-0228-2
Barba, F. J., Esteve, M. J., & Frigola, A. (2013). Physicochemical and nutritional characteristics of blueberry juice after high pressure processing. Food Research International, 50(2), 545-549. doi:10.1016/j.foodres.2011.02.038
Barba, F. J., Jäger, H., Meneses, N., Esteve, M. J., Frígola, A., & Knorr, D. (2012). Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innovative Food Science & Emerging Technologies, 14, 18-24. doi:10.1016/j.ifset.2011.12.004
Plaza, L., Sánchez-Moreno, C., De Ancos, B., Elez-Martínez, P., Martín-Belloso, O., & Cano, M. P. (2011). Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT - Food Science and Technology, 44(4), 834-839. doi:10.1016/j.lwt.2010.12.013
[-]