- -

PFA toolbox: a MATLAB tool for Metabolic Flux Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PFA toolbox: a MATLAB tool for Metabolic Flux Analysis

Mostrar el registro completo del ítem

Morales, Y.; Bosque Chacón, G.; Vehi, J.; Picó Marco, JA.; Llaneras, F. (2016). PFA toolbox: a MATLAB tool for Metabolic Flux Analysis. BMC Systems Biology. 10(46):1-10. https://doi.org/10.1186/s12918-016-0284-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/72995

Ficheros en el ítem

Metadatos del ítem

Título: PFA toolbox: a MATLAB tool for Metabolic Flux Analysis
Autor: Morales, Yeimy Bosque Chacón, Gabriel Vehi, Josep Picó Marco, Jesús Andrés Llaneras, Francisco
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Fecha difusión:
Resumen:
Background: Metabolic Flux Analysis (MFA) is a methodology that has been successfully applied to estimate metabolic fluxes in living cells. However, traditional frameworks based on this approach have some limitations, ...[+]
Palabras clave: Metabolic Flux Analysis , Interval MFA , Possibilistic MFA , Constraint-based modelling
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Systems Biology. (issn: 1752-0509 )
DOI: 10.1186/s12918-016-0284-1
Editorial:
BioMed Central
Versión del editor: http://dx.doi. org/10.1186/s12918-016-0284-1
Código del Proyecto:
info:eu-repo/grantAgreement/UdG//BR2012%2F26/
info:eu-repo/grantAgreement/MINECO//BES-2012-053772/ES/BES-2012-053772/
info:eu-repo/grantAgreement/MINECO//DPI2014-55276-C5-1-R/ES/BIOLOGIA SINTETICA PARA LA MEJORA EN BIOPRODUCCION: DISEÑO, OPTIMIZACION, MONITORIZACION Y CONTROL/
Agradecimientos:
This research has been partially supported by the Spanish Government (FEDER-CICYT: DPI 2014-55276-C5-1-R). Yeimy Morales is grateful for the BR Grants of the University of Girona (BR2012/26). Gabriel Bosque Chacon is ...[+]
Tipo: Artículo

References

Sauer U, Hatzimanikatis V, Bailey J, Hochuli M, Szyperski T, Wuethrich K. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature biotechnology. 1997;15(5):448–52.

Wittmann C. Metabolic flux analysis using mass spectrometry. In: Tools and Applications of Biochemical Engineering Science. Berlin: Springer; 2002. p. 39–64.

Antoniewicz M. Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biot. 2015;42(3):317–25. [+]
Sauer U, Hatzimanikatis V, Bailey J, Hochuli M, Szyperski T, Wuethrich K. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nature biotechnology. 1997;15(5):448–52.

Wittmann C. Metabolic flux analysis using mass spectrometry. In: Tools and Applications of Biochemical Engineering Science. Berlin: Springer; 2002. p. 39–64.

Antoniewicz M. Methods and advances in metabolic flux analysis: a mini-review. J Ind Microbiol Biot. 2015;42(3):317–25.

Araúzo-Bravo MR, Shimizu JK. An improved method for statistical analysis of metabolic flux analysis using isotopomer-mapping matrices with analytical expressions. J Biotech. 2003;05:117–33.

Klamt S, Schuster S, Gilles D. Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple nonsulfur bacteria. Biotechnol Bioeng. 2002;77(7):734–51.

Llaneras F. Interval and possibilistic methods for constraint-based metabolic models, PhD Thesis. Universidad Politécnica de Valencia: Departamento de Ingeniería de Sistemas y Automática; 2011.

Llaneras F, Picó J. An interval approach for dealing with flux distributions and elementary modes activity patterns. J Theor Biol. 2007;246(2):290–308.

Llaneras F, Sala A, Picó J. A possibilistic framework for constraint-based metabolic flux analysis. BMC Syst Biol. 2009;3(1):79.

Tortajada M, Llaneras F, Picó J. Validation of a constraint-based model of Pichia pastoris metabolism under data scarcity. BMC Syst Biol. 2010;4(1):115.

Llaneras F, Picó J. A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient. BMC Bioinformatics. 2007;8(1):421.

Iyer VV, Ovacik MA, Androulakis IP, Roth CM, Ierapetritou MG. Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes. Toxicology and applied pharmacology. 2010;248(3):165–77.

Zamorano F, Wouwer A, Bastin G. Detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol. 2010;150(4):497–508.

Iyer V, Yang H, Ierapetritou M, Roth C. Effects of glucose and insulin on HepG2‐C3A cell metabolism. Biotechnol Bioeng. 2010;107(2):347–56.

Iyer V, Androulakis I, Roth C, Ierapetritou M. Effects of Triadimefon on the Metabolism of Cultured Hepatocytes. In: BioInformatics and BioEngineering (BIBE), IEEE International Conference on. 2010. p. 118–23.

Orman MA, Arai K, Yarmush ML, Androulakis IP, Berthiaume F, Ierapetritou MG. Metabolic flux determination in perfused livers by mass balance analysis: effect of fasting. Biotechnology and bioengineering. 2010;107(5):825–35.

Hoppe A, Hoffmann S, Gerasch A, Gille C, Holzhütter H. FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC bioinformatics. 2011;12(1):28.

González J, Folch-Fortuny A, Llaneras F, Tortajada M, Picó J, Ferrer A. Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometr Intell Lab. 2014;134:89–99.

Morales Y, Tortajada M, Picó J, Vehí J, Llaneras F. Validation of an FBA model for Pichia pastoris in chemostat cultures. BMC System Biol. 2014;8(1):142.

Stephanopoulos GN, Aristidou AA, Nielsen J. Metabolic Engineering: Principles and Methodologies. San Diego, USA: Academic; 1998.

Heijden R, Romein B, Heijnen J, Hellinga C, Luyben K. Linear constraint relations in biochemical reaction systems: I & II. Biotech Bioeng. 1994;43(1):3–10.

Lofberg J. YALMIP: A toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design. 2004. p. 284–9.

YALMIP Home Page [ http://users.isy.liu.se/johanl/yalmip/ ]. Accessed 11 May 2016.

IBM ILOG CPLEX- High-performance mathematical programming engine. [ http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/ ]. Accessed 11 May 2016.

GLPK (GNU Linear programming kit) [ http://www.gnu.org/software/glpk/ ]. Accessed 11 May 2016.

Orth D, Fleming M, Palsson B. Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus. 2010;4:1.

Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wüthrich K, Bailey J, Sauer U. Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. Journal of bacteriology. 2002;184(1):152–64.

Orth J, Conrad T, Na J, Lerman J, Nam H, Feist A, Palsson B. A comprehensive genome‐scale reconstruction of Escherichia coli metabolism—2011. Molecular systems biology. 2011;7(1):535.

Bonarius H, Schmid G, Tramper J. Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends in Biotechnology. 1997;15(8):308–14.

Palsson BØ. Systems biology: properties of reconstructed networks. New York: Cambridge University Press; 2006.

Schilling C, Covert M, Famili I, Church G, Edwards J, Palsson B. Genome-scale metabolic model of Helicobacter pylori 26695. Journal of Bacteriology. 2002;184(16):4582–93.

Solà A, Jouhten P, Maaheimo H, Sánchez-Ferrando F, Szyperski T, Ferrer P. Metabolic flux profiling of Pichia pastoris grown on glycerol/methanol mixtures in chemostat cultures at low and high dilution rates. Microbiol. 2007;153:281–90.

Solà A. Estudi del metabolisme central del carboni de Pichia pastoris, PhD Thesis. Universitat Autònoma de Barceloana: Escola Tècnica Superior d’Enginyeria; 2004.

Jungo C, Rerat C, Marison IW, von Stockar U. Quantitative characterization of the regulation of the synthesis of alcohol oxidase and of the expression of recombinant avidin in a Pichia pastoris Mut + strain. Enzyme Microb Technol. 2006;39:936–44.

Tortajada M. Process development for the obtention and use of recombinant glycosidases: expression, modelling and immobilization, PhD Thesis. Universidad Politécnica de Valencia: Departamento de Ingeniería de Sistemas y Automática; 2012.

Jordà J, de Jesus SS, Peltier S, Ferrer P, Albiol J. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived 13C-labelling data from proteinogenic amino acids. New Biotecnol. 2014;31(1):120–32.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem