- -

Non-structural carbohydrates in woody plants compared among laboratories

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Non-structural carbohydrates in woody plants compared among laboratories

Mostrar el registro completo del ítem

Quentin, AG.; Pinkard, EA.; Ryan, MG.; Tissue, DT.; Baggett, LS.; Adams, HD.; Maillard, P.... (2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology. 35(11):1146-1165. https://doi.org/10.1093/treephys/tpv073

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/73676

Ficheros en el ítem

Metadatos del ítem

Título: Non-structural carbohydrates in woody plants compared among laboratories
Autor: Quentin, Audrey G. Pinkard, Elizabeth A. Ryan, Michael G. Tissue, David T. Baggett, L. Scott Adams, Henry D. Maillard, Pascale Marchand, Jacqueline Landhaeusser, Simon M. Lacointe, Andre Gibon, Yves Anderegg, William R. L Asao, Shinichi Atkin, Owen K. Bonhomme, Marc Claye, Caroline González Nebauer, Sergio
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many ...[+]
Palabras clave: Extraction and quantification consistency , Non-structural carbohydrate chemical analysis , Particle size , Reference method , Soluble sugars , Standardization , Starch
Derechos de uso: Reserva de todos los derechos
Fuente:
Tree Physiology. (issn: 0829-318X )
DOI: 10.1093/treephys/tpv073
Editorial:
Oxford University Press (OUP)
Versión del editor: https://dx.doi.org/10.1093/treephys/tpv073
Código del Proyecto:
info:eu-repo/grantAgreement/NSF/Office of the Director/1443108/US/
...[+]
info:eu-repo/grantAgreement/NSF/Office of the Director/1443108/US/
info:eu-repo/grantAgreement/MAAMA//ARBALMONT%2F786-2012/ES/
info:eu-repo/grantAgreement/Montana IoE//NSF-IIA-1443108/
info:eu-repo/grantAgreement/FONDECYT//11121175/
info:eu-repo/grantAgreement/HM//IUT-8-3/
info:eu-repo/grantAgreement/MICINN//CGL2010-16376/ES/CAMBIOS HIDROLOGICOS ABRUPTOS EN LA PENINSULA IBERICA DURANTE LAS OSCILACIONES CLIMATICAS DE LOS PERIODOS INTERGLACIARES/
[-]
Agradecimientos:
M.G.R. was funded by McMaster fellowship (1158.C). S.P. was funded by Juan de la Cierva contract (MCI project) and project ARBALMONT/786-2012 (OPAN, MAAMA, Spain). F.P. was funded by Fondecyt 11121175. U.N. and M.T. were ...[+]
Tipo: Artículo

References

Adams, H. D., Germino, M. J., Breshears, D. D., Barron-Gafford, G. A., Guardiola-Claramonte, M., Zou, C. B., & Huxman, T. E. (2013). Nonstructural leaf carbohydrate dynamics ofPinus edulisduring drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197(4), 1142-1151. doi:10.1111/nph.12102

AINSWORTH, E. A., & ROGERS, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2 ]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270. doi:10.1111/j.1365-3040.2007.01641.x

Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., … Long, S. P. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8(8), 695-709. doi:10.1046/j.1365-2486.2002.00498.x [+]
Adams, H. D., Germino, M. J., Breshears, D. D., Barron-Gafford, G. A., Guardiola-Claramonte, M., Zou, C. B., & Huxman, T. E. (2013). Nonstructural leaf carbohydrate dynamics ofPinus edulisduring drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytologist, 197(4), 1142-1151. doi:10.1111/nph.12102

AINSWORTH, E. A., & ROGERS, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2 ]: mechanisms and environmental interactions. Plant, Cell & Environment, 30(3), 258-270. doi:10.1111/j.1365-3040.2007.01641.x

Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., … Long, S. P. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8(8), 695-709. doi:10.1046/j.1365-2486.2002.00498.x

Anderegg, W. R. L., & Anderegg, L. D. L. (2013). Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species. Tree Physiology, 33(3), 252-260. doi:10.1093/treephys/tpt016

ARNDT, S. K., LIVESLEY, S. J., MERCHANT, A., BLEBY, T. M., & GRIERSON, P. F. (2008). Quercitol and osmotic adaptation of field-grown Eucalyptus under seasonal drought stress. Plant, Cell & Environment, 31(7), 915-924. doi:10.1111/j.1365-3040.2008.01803.x

Snapka, R. M., Permana, P. A., Marquit, G., & Shin, C.-G. (1991). Two-dimensional agarose gel analysis of simian virus 40 DNA replication intermediates. Methods, 3(2), 73-82. doi:10.1016/s1046-2023(05)80198-7

Barry, K. M., Quentin, A., Eyles, A., & Pinkard, E. A. (2011). Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladiere. Tree Physiology, 32(1), 24-35. doi:10.1093/treephys/tpr128

Bonhomme, M., Rageau, R., Lacointe, A., & Gendraud, M. (2005). Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia and nearby structures of peach buds (Prunus persica L. Batch). Scientia Horticulturae, 105(2), 223-240. doi:10.1016/j.scienta.2005.01.015

Bryant, J. P., Chapin, F. S., & Klein, D. R. (1983). Carbon/Nutrient Balance of Boreal Plants in Relation to Vertebrate Herbivory. Oikos, 40(3), 357. doi:10.2307/3544308

Campo, L., Monteagudo, A. B., Salleres, B., Castro, P., & Moreno-Gonzalez, J. (2013). NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability. Spanish Journal of Agricultural Research, 11(2), 463. doi:10.5424/sjar/2013112-3316

Chapin, F. S., Schulze, E., & Mooney, H. A. (1990). The Ecology and Economics of Storage in Plants. Annual Review of Ecology and Systematics, 21(1), 423-447. doi:10.1146/annurev.es.21.110190.002231

Cheng, J., Fan, P., Liang, Z., Wang, Y., Niu, N., Li, W., & Li, S. (2009). Accumulation of End Products in Source Leaves Affects Photosynthetic Rate in Peach via Alteration of Stomatal Conductance and Photosynthetic Efficiency. Journal of the American Society for Horticultural Science, 134(6), 667-676. doi:10.21273/jashs.134.6.667

Chow, P. S., & Landhausser, S. M. (2004). A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiology, 24(10), 1129-1136. doi:10.1093/treephys/24.10.1129

Dichio, B., Xiloyannis, C., Sofo, A., & Montanaro, G. (2006). Effects of post-harvest regulated deficit irrigation on carbohydrate and nitrogen partitioning, yield quality and vegetative growth of peach trees. Plant and Soil, 290(1-2), 127-137. doi:10.1007/s11104-006-9144-x

DICKMAN, L. T., MCDOWELL, N. G., SEVANTO, S., PANGLE, R. E., & POCKMAN, W. T. (2014). Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant, Cell & Environment, 38(4), 729-739. doi:10.1111/pce.12441

Dickson, R. E., & Larson, P. R. (1975). Incorporation of 14C-Photosynthate into Major Chemical Fractions of Source and Sink Leaves of Cottonwood. Plant Physiology, 56(2), 185-193. doi:10.1104/pp.56.2.185

Dietze, M. C., Sala, A., Carbone, M. S., Czimczik, C. I., Mantooth, J. A., Richardson, A. D., & Vargas, R. (2014). Nonstructural Carbon in Woody Plants. Annual Review of Plant Biology, 65(1), 667-687. doi:10.1146/annurev-arplant-050213-040054

Drake, P. L., Mendham, D. S., & Ogden, G. N. (2013). Plant carbon pools and fluxes in coppice regrowth of Eucalyptus globulus. Forest Ecology and Management, 306, 161-170. doi:10.1016/j.foreco.2013.06.034

Duan, H., Amthor, J. S., Duursma, R. A., O’Grady, A. P., Choat, B., & Tissue, D. T. (2013). Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO2] and elevated temperature. Tree Physiology, 33(8), 779-792. doi:10.1093/treephys/tpt061

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

El Zein, R., Maillard, P., Breda, N., Marchand, J., Montpied, P., & Gerant, D. (2011). Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. Tree Physiology, 31(8), 843-854. doi:10.1093/treephys/tpr074

Emons, H., Linsinger, T. P. ., & Gawlik, B. . (2004). Reference materials: terminology and use. Can’t one see the forest for the trees? TrAC Trends in Analytical Chemistry, 23(6), 442-449. doi:10.1016/s0165-9936(04)00604-1

Escobar-Gutiérrez A Moing A Gaudillère J-P (1997) Time course of carbohydrates concentration in mature leaves of peach seedlings [Prunus persica (L.) Batsch] during the night . ISHS Acta Horticulturae 465: IV International Peach Symposium, pp 337–344.

Eyles, A., Pinkard, E. A., & Mohammed, C. (2009). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiology, 29(6), 753-764. doi:10.1093/treephys/tpp014

EYLES, A., PINKARD, E. A., O’GRADY, A. P., WORLEDGE, D., & WARREN, C. R. (2009). Role of corticular photosynthesis following defoliation inEucalyptus globulus. Plant, Cell & Environment, 32(8), 1004-1014. doi:10.1111/j.1365-3040.2009.01984.x

Eyles, A., Pinkard, E. A., Davies, N. W., Corkrey, R., Churchill, K., O’Grady, A. P., … Mohammed, C. (2013). Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings. Journal of Experimental Botany, 64(6), 1625-1636. doi:10.1093/jxb/ert017

Fajardo, A., & Piper, F. I. (2014). An experimental approach to explain the southern Andes elevational treeline. American Journal of Botany, 101(5), 788-795. doi:10.3732/ajb.1400166

Fajardo, A., Piper, F. I., & Cavieres, L. A. (2010). Distinguishing local from global climate influences in the variation of carbon status with altitude in a tree line species. Global Ecology and Biogeography, 20(2), 307-318. doi:10.1111/j.1466-8238.2010.00598.x

Fajardo, A., Piper, F. I., Pfund, L., Körner, C., & Hoch, G. (2012). Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytologist, 195(4), 794-802. doi:10.1111/j.1469-8137.2012.04214.x

Fajardo, A., Piper, F. I., & Hoch, G. (2013). Similar variation in carbon storage between deciduous and evergreen treeline species across elevational gradients. Annals of Botany, 112(3), 623-631. doi:10.1093/aob/mct127

Galiano, L., Martínez-Vilalta, J., & Lloret, F. (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode. New Phytologist, 190(3), 750-759. doi:10.1111/j.1469-8137.2010.03628.x

Gauthier, P. P. G., Crous, K. Y., Ayub, G., Duan, H., Weerasinghe, L. K., Ellsworth, D. S., … Atkin, O. K. (2014). Drought increases heat tolerance of leaf respiration in Eucalyptus globulus saplings grown under both ambient and elevated atmospheric [CO2] and temperature. Journal of Experimental Botany, 65(22), 6471-6485. doi:10.1093/jxb/eru367

Giannoccaro, E., Wang, Y.-J., & Chen, P. (2008). Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars. Food Chemistry, 106(1), 324-330. doi:10.1016/j.foodchem.2007.04.065

Gomez, L., Rubio, E., & Augé, M. (2002). A new procedure for extraction and measurement of soluble sugars in ligneous plants. Journal of the Science of Food and Agriculture, 82(4), 360-369. doi:10.1002/jsfa.1046

Gordon, D., Rosati, A., Damiano, C., & Dejong, T. M. (2006). Seasonal effects of light exposure, temperature, trunk growth and plant carbohydrate status on the initiation and growth of epicormic shoots in Prunus persica. The Journal of Horticultural Science and Biotechnology, 81(3), 421-428. doi:10.1080/14620316.2006.11512083

Graham, C. . (2002). Nonstructural carbohydrate and prunasin composition of peach seedlings fertilized with different nitrogen sources and aluminum. Scientia Horticulturae, 94(1-2), 21-32. doi:10.1016/s0304-4238(01)00345-4

Grünzweig, J. M., Carmel, Y., Riov, J., Sever, N., McCreary, D. D., & Flather, C. H. (2008). Growth, resource storage, and adaptation to drought in California and eastern Mediterranean oak seedlings. Canadian Journal of Forest Research, 38(2), 331-342. doi:10.1139/x07-152

Hall, M. B. (2013). Efficacy of reducing sugar and phenol–sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology, 185(1-2), 94-100. doi:10.1016/j.anifeedsci.2013.06.008

Handa, I. T., Körner, C., & Hättenschwiler, S. (2005). A TEST OF THE TREELINE CARBON LIMITATION HYPOTHESIS BY IN SITU CO2ENRICHMENT AND DEFOLIATION. Ecology, 86(5), 1288-1300. doi:10.1890/04-0711

Hansen, J., & Møller, I. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Analytical Biochemistry, 68(1), 87-94. doi:10.1016/0003-2697(75)90682-x

Hartmann, H., Ziegler, W., & Trumbore, S. (2013). Lethal drought leads to reduction in nonstructural carbohydrates in N orway spruce tree roots but not in the canopy. Functional Ecology, 27(2), 413-427. doi:10.1111/1365-2435.12046

Haukioja, E., & Koricheva, J. (2000). Tolerance to herbivory in woody vs. herbaceous plants. Evolutionary Ecology, 14(4-6). doi:10.1023/a:1011091606022

Hoch, G., & Körner, C. (2003). The carbon charging of pines at the climatic treeline: a global comparison. Oecologia, 135(1), 10-21. doi:10.1007/s00442-002-1154-7

HOCH, G., & KORNER, C. (2005). Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Functional Ecology, 19(6), 941-951. doi:10.1111/j.1365-2435.2005.01040.x

Hoch, G., Popp, M., & Korner, C. (2002). Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline. Oikos, 98(3), 361-374. doi:10.1034/j.1600-0706.2002.980301.x

HOCH, G., RICHTER, A., & KORNER, C. (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell and Environment, 26(7), 1067-1081. doi:10.1046/j.0016-8025.2003.01032.x

Huang, Y.-B., & Fu, Y. (2013). Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 15(5), 1095. doi:10.1039/c3gc40136g

Inglese, P., Caruso, T., Gugliuzza, G., & Pace, L. S. (2002). Crop Load and Rootstock Influence on Dry Matter Partitioning in Trees of Early and Late Ripening Peach Cultivars. Journal of the American Society for Horticultural Science, 127(5), 825-830. doi:10.21273/jashs.127.5.825

Jaikumar, N. S., Snapp, S. S., Flore, J. A., & Loescher, W. (2014). Photosynthetic Responses in Annual Rye, Perennial Wheat, and Perennial Rye Subjected to Modest Source:Sink Ratio Changes. Crop Science, 54(1), 274. doi:10.2135/cropsci2013.04.0280

Johansen, H. N., Glitsø, V., & Bach Knudsen, K. E. (1996). Influence of Extraction Solvent and Temperature on the Quantitative Determination of Oligosaccharides from Plant Materials by High-Performance Liquid Chromatography. Journal of Agricultural and Food Chemistry, 44(6), 1470-1474. doi:10.1021/jf950482b

Kagan, I. A., Kirch, B. H., Thatcher, C. D., Teutsch, C. D., & Pleasant, R. S. (2014). Chromatographic profiles of nonstructural carbohydrates contributing to the colorimetrically determined fructan, ethanol-soluble, and water-soluble carbohydrate contents of five grasses. Animal Feed Science and Technology, 188, 53-63. doi:10.1016/j.anifeedsci.2013.10.017

Kim, S., Kim, W., & Hwang, I. K. (2003). Optimization of the extraction and purification of oligosaccharides from defatted soybean meal. International Journal of Food Science and Technology, 38(3), 337-342. doi:10.1046/j.1365-2621.2003.00679.x

King, J. R., Conway, W. C., Rosen, D. J., Oswald, B. P., & Williams, H. M. (2014). Total Nonstructural Carbohydrate Trends in Deeproot Sedge (Cyperus entrerianus). Weed Science, 62(1), 186-192. doi:10.1614/ws-d-11-00184.1

Kobe, R. K. (1997). Carbohydrate Allocation to Storage as a Basis of Interspecific Variation in Sapling Survivorship and Growth. Oikos, 80(2), 226. doi:10.2307/3546590

Korner, C. (2003). Carbon limitation in trees. Journal of Ecology, 91(1), 4-17. doi:10.1046/j.1365-2745.2003.00742.x

Kozlowski, T. T. (1992). Carbohydrate sources and sinks in woody plants. The Botanical Review, 58(2), 107-222. doi:10.1007/bf02858600

Landh�usser, S. M., & Lieffers, V. J. (2003). Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees - Structure and Function, 17(6), 471-476. doi:10.1007/s00468-003-0263-1

Leite, G. B., Bonhomme, M., Lacointe, A., Rageau, R., Sakr, S., Guilliot, A., … Couto-Rodriguez, A. (2004). INFLUENCE OF LACK OF CHILLING ON BUD-BREAK PATTERNS AND EVOLUTION OF SUGAR CONTENTS IN BUDS AND STEM TISSUES ALONG THE ONE-YEAR-OLD SHOOT OF THE PEACH TREES. Acta Horticulturae, (662), 61-71. doi:10.17660/actahortic.2004.662.5

Li, M.-H., Xiao, W.-F., Wang, S.-G., Cheng, G.-W., Cherubini, P., Cai, X.-H., … Zhu, W.-Z. (2008). Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology, 28(8), 1287-1296. doi:10.1093/treephys/28.8.1287

Li, W. D., Duan, W., Fan, P. G., Yan, S. T., & Li, S. H. (2007). Photosynthesis in response to sink--source activity and in relation to end products and activities of metabolic enzymes in peach trees. Tree Physiology, 27(9), 1307-1318. doi:10.1093/treephys/27.9.1307

LUSK, C. H., & PIPER, F. I. (2007). Seedling size influences relationships of shade tolerance with carbohydrate-storage patterns in a temperate rainforest. Functional Ecology, 21(1). doi:10.1111/j.1365-2435.2006.01205.x

Macrae, J. C., Smith, D., & McCready, R. M. (1974). Starch estimation in leaf tissue—A comparison of results using six methods. Journal of the Science of Food and Agriculture, 25(12), 1465-1469. doi:10.1002/jsfa.2740251206

Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Analytical Chemistry, 75(13), 3019-3030. doi:10.1021/ac020361s

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., … Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739. doi:10.1111/j.1469-8137.2008.02436.x

Merchant, A., Peuke, A. D., Keitel, C., Macfarlane, C., Warren, C. R., & Adams, M. A. (2010). Phloem sap and leaf δ13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. Journal of Experimental Botany, 61(6), 1785-1793. doi:10.1093/jxb/erq045

Mitchell, P. J., O’Grady, A. P., Tissue, D. T., White, D. A., Ottenschlaeger, M. L., & Pinkard, E. A. (2012). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 197(3), 862-872. doi:10.1111/nph.12064

Mitchell, P. J., O’Grady, A. P., Tissue, D. T., Worledge, D., & Pinkard, E. A. (2014). Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. Tree Physiology, 34(5), 443-458. doi:10.1093/treephys/tpu014

Moing, A., Carbonne, F., Rashad, M. H., & Gaudillère, J.-P. (1992). Carbon Fluxes in Mature Peach Leaves. Plant Physiology, 100(4), 1878-1884. doi:10.1104/pp.100.4.1878

Mooney, H. A. (1972). The Carbon Balance of Plants. Annual Review of Ecology and Systematics, 3(1), 315-346. doi:10.1146/annurev.es.03.110172.001531

MORGAN, P. B., AINSWORTH, E. A., & LONG, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell and Environment, 26(8), 1317-1328. doi:10.1046/j.0016-8025.2003.01056.x

Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 62(6), 1715-1729. doi:10.1093/jxb/erq438

Nakagawa, S., & Schielzeth, H. (2012). A general and simple method for obtainingR2from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. doi:10.1111/j.2041-210x.2012.00261.x

NII, N. (1997). Changes of Starch and Sorbitol in Leaves Before and After Removal of Fruits from Peach Trees. Annals of Botany, 79(2), 139-144. doi:10.1006/anbo.1996.0324

O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J., & Hector, A. (2014). Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nature Climate Change, 4(8), 710-714. doi:10.1038/nclimate2281

O’Grady, A. P., Eyles, A., Worledge, D., & Battaglia, M. (2010). Seasonal patterns of foliage respiration in dominant and suppressed Eucalyptus globulus canopies. Tree Physiology, 30(8), 957-968. doi:10.1093/treephys/tpq057

Palacio, S., Hoch, G., Sala, A., Körner, C., & Millard, P. (2013). Does carbon storage limit tree growth? New Phytologist, 201(4), 1096-1100. doi:10.1111/nph.12602

PINKARD, E. A., EYLES, A., & O’GRADY, A. P. (2011). Are gas exchange responses to resource limitation and defoliation linked to source:sink relationships? Plant, Cell & Environment, 34(10), 1652-1665. doi:10.1111/j.1365-3040.2011.02361.x

Piper, F. I. (2011). Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance. Annals of Forest Science, 68(2), 415-424. doi:10.1007/s13595-011-0030-1

Piper, F. I., & Fajardo, A. (2011). No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions. Annals of Botany, 108(5), 907-917. doi:10.1093/aob/mcr195

Piper, F. I., & Fajardo, A. (2014). Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. Journal of Ecology, 102(5), 1101-1111. doi:10.1111/1365-2745.12284

Quentin, A. G., Pinkard, E. A., Beadle, C. L., Wardlaw, T. J., O’Grady, A. P., Paterson, S., & Mohammed, C. L. (2010). Do artificial and natural defoliation have similar effects on physiology of Eucalyptus globulus Labill. seedlings? Annals of Forest Science, 67(2), 203-203. doi:10.1051/forest/2009096

Quentin, A. G., Beadle, C. L., O’Grady, A. P., & Pinkard, E. A. (2011). Effects of partial defoliation on closed canopy Eucalyptus globulus Labilladière: Growth, biomass allocation and carbohydrates. Forest Ecology and Management, 261(3), 695-702. doi:10.1016/j.foreco.2010.11.028

Quevauviller, P., Astruc, M., Ebdon, L., Desauziers, V., Sarradin, P. M., Astruc, A., … Griepink, B. (1994). Certified reference material (CRM 462) for the quality control of dibutyl- and tributyl-tin determinations in coastal sediment. Applied Organometallic Chemistry, 8(7-8), 629-637. doi:10.1002/aoc.590080713

Raessler, M., Wissuwa, B., Breul, A., Unger, W., & Grimm, T. (2010). Chromatographic analysis of major non-structural carbohydrates in several wood species – an analytical approach for higher accuracy of data. Analytical Methods, 2(5), 532. doi:10.1039/b9ay00193j

Richardson, A. D., Carbone, M. S., Keenan, T. F., Czimczik, C. I., Hollinger, D. Y., Murakami, P., … Xu, X. (2012). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197(3), 850-861. doi:10.1111/nph.12042

Rose, R., Rose, C. L., Omi, S. K., Forry, K. R., Durall, D. M., & Bigg, W. L. (1991). Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. Journal of Agricultural and Food Chemistry, 39(1), 2-11. doi:10.1021/jf00001a001

Ruuhola, T., Keinanen, M., Keski-Saari, S., & Lehto, T. (2011). Boron nutrition affects the carbon metabolism of silver birch seedlings. Tree Physiology, 31(11), 1251-1261. doi:10.1093/treephys/tpr109

Ryan, M. G. (2011). Tree responses to drought. Tree Physiology, 31(3), 237-239. doi:10.1093/treephys/tpr022

RYAN, M. G., PHILLIPS, N., & BOND, B. J. (2006). The hydraulic limitation hypothesis revisited. Plant, Cell and Environment, 29(3), 367-381. doi:10.1111/j.1365-3040.2005.01478.x

Sala, A., Piper, F., & Hoch, G. (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 186(2), 274-281. doi:10.1111/j.1469-8137.2009.03167.x

Sala, A., Fouts, W., & Hoch, G. (2011). Carbon Storage in Trees: Does Relative Carbon Supply Decrease with Tree Size? Size- and Age-Related Changes in Tree Structure and Function, 287-306. doi:10.1007/978-94-007-1242-3_11

Sala, A., Woodruff, D. R., & Meinzer, F. C. (2012). Carbon dynamics in trees: feast or famine? Tree Physiology, 32(6), 764-775. doi:10.1093/treephys/tpr143

Silva, C. M. S. da, Habermann, G., Marchi, M. R. R., & Zocolo, G. J. (2012). The role of matrix effects on the quantification of abscisic acid and its metabolites in the leaves of Bauhinia variegata L. using liquid chromatography combined with tandem mass spectrometry. Brazilian Journal of Plant Physiology, 24(3), 223-232. doi:10.1590/s1677-04202012000300009

Karduck, P., Sloof, W. G., & Saunders, S. (2004). Certified Reference Materials for Micro-Analysis of Carbon and Nitrogen. Microchimica Acta, 145(1-4), 209-213. doi:10.1007/s00604-003-0155-5

SEVANTO, S., MCDOWELL, N. G., DICKMAN, L. T., PANGLE, R., & POCKMAN, W. T. (2013). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37(1), 153-161. doi:10.1111/pce.12141

Shvaleva, A. L., Silva, F. C. E., Breia, E., Jouve, J., Hausman, J. F., Almeida, M. H., … Chaves, M. M. (2006). Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiology, 26(2), 239-248. doi:10.1093/treephys/26.2.239

Smeraglia, J., Baldrey, S. F., & Watson, D. (2002). Matrix effects and selectivity issues in LC-MS-MS. Chromatographia, 55(S1), S95-S99. doi:10.1007/bf02493363

Strauss, S. Y., & Agrawal, A. A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends in Ecology & Evolution, 14(5), 179-185. doi:10.1016/s0169-5347(98)01576-6

Thompson, M., & Ellison, S. L. R. (2004). A review of interference effects and their correction in chemical analysis with special reference to uncertainty. Accreditation and Quality Assurance, 10(3), 82-97. doi:10.1007/s00769-004-0871-5

Tworkoski, T. J., Glenn, D. M., & Welker, W. V. (1997). Carbohydrate and Nitrogen Partitioning within One-year Shoots of Young Peach Trees Grown with Grass Competition. HortScience, 32(7), 1174-1177. doi:10.21273/hortsci.32.7.1174

Weibel A Reighard G Rajapakse N DeJong T (2008) Dormant carbohydrate reserves of two peach cultivars grafted on different vigor rootstocks . ISHS Acta Horticulturae 903: IX International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems, pp 815–820.

Wiley, E., & Helliker, B. (2012). A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytologist, 195(2), 285-289. doi:10.1111/j.1469-8137.2012.04180.x

WITTIG, V. E., AINSWORTH, E. A., NAIDU, S. L., KARNOSKY, D. F., & LONG, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15(2), 396-424. doi:10.1111/j.1365-2486.2008.01774.x

Yemm, E. W., & Willis, A. J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508-514. doi:10.1042/bj0570508

Zhang, C., Shen, Z., Zhang, Y., Han, J., Ma, R., Korir, N. K., & Yu, M. (2012). Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Acta Physiologiae Plantarum, 35(2), 589-602. doi:10.1007/s11738-012-1100-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem