Mostrar el registro sencillo del ítem
dc.contributor.author | Lorente Garcés, Vicente Jesús | es_ES |
dc.contributor.author | Valero Bresó, Alejandro | es_ES |
dc.contributor.author | Canal, Ramón | es_ES |
dc.date.accessioned | 2016-11-10T12:33:36Z | |
dc.date.available | 2016-11-10T12:33:36Z | |
dc.date.issued | 2014 | |
dc.identifier.isbn | 978-3-642-54419-4 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/10251/73801 | |
dc.description | The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-54420-0_45 | es_ES |
dc.description.abstract | Unlike other previous techniques, the recently proposed Hard Error Recovery (HER) fault-tolerant cache provides 100% fault-coverage in L1 data caches. This full coverage makes the HER cache appropiate for fault-dominated future technology nodes. An n-way set-associative HER cache implements one cache way with fast SRAM banks and the remaining ways with eDRAM banks to address power and area. Since the number of eDRAM cache blocks used in a specific HER cache organization depends on the cache associativity (i.e., the implemented number of ways), we expect that the performance and energy consumption provided by a given HER cache design strongly depends on the cache geometry. In this work we study the behavior of the HER cache design when applied to a highly associative L1 cache like those found in some modern microprocessors. In particular this work explores a 32KB 8-way associative L1 data cache such as the one used in Intel Haswell microarchitecture. Experimental results show that, at low-power modes compared to a conventional cache with the same storage capacity and number of ways, area, leakage power, and dynamic energy savings of a 4-way HER cache are by 25%, 85%, and 62%, respectively. These percentages are further improved (by 40%, 89%, and 68%, respectively) when the cache associativity is increased to 8 ways, while the performance loss with respect to both an 8-way conventional cache and the 4-way HER cache is minimal. | es_ES |
dc.description.sponsorship | This work was supponed by Generalitat de Catalunya (200950R1250), by FP7 program of the European Commission (TRAMS-248789), by Spanish Ministerio de Economía y Competitividad (MINECO) and by FEDER funds under Grant TlN2012-38341-C04-01 and TIN2010-18368. | es_ES |
dc.format.extent | 11 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Euro-Par 2013: Parallel Processing Workshops | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;8374 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Enhancing Performance and Energy Consumption of HER Caches by Adding Associativity | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-642-54420-0_45 | |
dc.relation.projectID | info:eu-repo/grantAgreement/Generalitat de Catalunya//2009 5GR 1250/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/248789/EU/TERASCALE RELIABLE ADAPTIVE MEMORY SYSTEMS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2012-38341-C04-01/ES/MEJORA DE LA ARQUITECTURA DE SERVIDORES, SERVICIOS Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TIN2010-18368/ES/MICROARQUITECTURA Y COMPILADORES PARA FUTUROS PROCESADORES II/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica | es_ES |
dc.description.bibliographicCitation | Lorente Garcés, VJ.; Valero Bresó, A.; Canal, R. (2014). Enhancing Performance and Energy Consumption of HER Caches by Adding Associativity. En Euro-Par 2013: Parallel Processing Workshops. Springer. 454-464. https://doi.org/10.1007/978-3-642-54420-0_45 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | Second International Workshop on On-chip memory hierarchies and interconnects: organization, management and implementation (OMHI2013). in conjunction with Euro-Par 2013 | es_ES |
dc.relation.conferencedate | August 26-27, 2013 | es_ES |
dc.relation.conferenceplace | Aachen, Germany | es_ES |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007%2F978-3-642-54420-0_45 | es_ES |
dc.description.upvformatpinicio | 454 | es_ES |
dc.description.upvformatpfin | 464 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.senia | 259217 | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Bhavnagarwala, A.J., et al.: The Impact of Intrinsic Device Fluctuations on CMOS SRAM Cell Stability. IEEE Journal of Solid-State Circuits 36(4), 658–665 (2001) | es_ES |
dc.description.references | Mukhopadhyay, S., et al.: Modeling of Failure Probability and Statistical Design of SRAM Array for Yield Enhancement in Nanoscaled CMOS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(12), 1859–1880 (2005) | es_ES |
dc.description.references | Shirvani, P.P., McCluskey, E.J.: PADded Cache: A New Fault-Tolerance Technique for Cache Memories. In: Proceedings of the 17th IEEE VLSI Test Symposium, pp. 440–445 (1999) | es_ES |
dc.description.references | Wilkerson, C., et al.: Trading off Cache Capacity for Reliability to Enable Low Voltage Operation. In: Proceedings of the 35th Annual International Symposium on Computer Architecture, pp. 203–214 (2008) | es_ES |
dc.description.references | Agarwal, A., et al.: Process Variation in Embedded Memories: Failure Analysis and Variation Aware Architecture. IEEE Journal of Solid-State Circuits 40(9), 1804–1814 (2005) | es_ES |
dc.description.references | Ansari, A., et al.: Archipelago: A Polymorphic Cache Design for Enabling Robust Near-Threshold Operation. In: Proceedings of the 17th International Symposium on High Performance Computer Architecture, pp. 539–550 (2011) | es_ES |
dc.description.references | Nomura, S., et al.: Sampling + DMR: Practical and Low-overhead Permanent Fault Detection. In: Proceedings of the 38th Annual International Symposium on Computer Architecture, pp. 201–212 (2011) | es_ES |
dc.description.references | Sinharoy, B., et al.: IBM POWER7 multicore server processor. IBM Journal of Research and Development 55(3) (2011) | es_ES |
dc.description.references | Lorente, V., et al.: Combining RAM technologies for hard-error recovery in L1 data caches working at very-low power modes. In: Proceedings of the Design, Automation, and Test in Europe Conference, pp. 83–88 (2013) | es_ES |
dc.description.references | Kanter, D.: Intel’s Haswell CPU Microarchitecture, ”Real World Technologies” (November 13, 2012), http://www.realworldtech.com/haswell-cpu/ | es_ES |
dc.description.references | Paul, S., et al.: Reliability-Driven ECC Allocation for Multiple Bit Error Resilience in Processor Cache. IEEE Transactions on Computers 60(1), 20–34 (2011) | es_ES |
dc.description.references | Alameldeen, A.R., et al.: Adaptive Cache Design to Enable Reliable Low-Voltage Operation. IEEE Transactions on Computers 60, 50–63 (2011) | es_ES |
dc.description.references | Dreslinski, R.G., et al.: Reconfigurable Energy Efficient Near Threshold Cache Architectures. In: Proceedings of the 41st Annual IEEE/ACM International Symposium on Microarchitecture, pp. 459–470 (2008) | es_ES |
dc.description.references | Wilkerson, C., et al.: Reducing Cache Power with Low-Cost, Multi-bit Error-Correcting Codes. In: Proceedings of the 37th Annual International Symposium on Computer Architecture, pp. 83–93 (2010) | es_ES |
dc.description.references | Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. ACM SIGARCH Computer Architecture News 25(3), 13–25 (1997) | es_ES |
dc.description.references | Thoziyoor, S., et al.: CACTI 5.1. Hewlett-Packard Laboratories, Palo Alto, Technical Report (2008) | es_ES |
dc.description.references | spec2000: Standard Performance Evaluation Corporation, http://www.spec.org/cpu2000 | es_ES |
dc.description.references | Kulkarni, J.P., et al.: A 160 mV, Fully Differential, Robust Schmitt Trigger Based Sub-threshold SRAM. In: Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 171–176 (2007) | es_ES |
dc.description.references | Keeth, B., et al.: DRAM Circuit Design. Fundamental and High-Speed Topics. John Wiley and Sons, Inc., Hoboken (2008) | es_ES |
dc.description.references | Mueller, W., et al.: Challenges for the DRAM Cell Scaling to 40nm. In: IEEE International Electron Devices Meeting 4, pp. 336–339 (2005) | es_ES |