Mostrar el registro sencillo del ítem
dc.contributor.author | Jimenez Mocholi, Antonio José | es_ES |
dc.contributor.author | Gimenez Palomares, Fernando | es_ES |
dc.contributor.author | Lapuebla Ferri, Andrés | es_ES |
dc.date.accessioned | 2016-11-23T13:28:41Z | |
dc.date.available | 2016-11-23T13:28:41Z | |
dc.date.issued | 2014-03-31 | |
dc.identifier.uri | http://hdl.handle.net/10251/74526 | |
dc.description.abstract | [EN] Linear Elasticity is a discipline that studies the elastic solids which generate a mechanical response in linear elastic regime under external forces. In particular, is of special interest to study the stresses and strains at any point of the solid, which is known as the elastic problem. In Elasticity it is necessary to know the so-called state of stress in the differential environment of a point of the elastic solid, and also the associated deformations. To this end, in this paper we present the virtual laboratories TENSIONES and DEFORMACIONES, made with the package Matlab through its graphical user interface (GUI). These two virtual laboratories can represent the states of stresses and strains at a point from user-entered variables, and are able to obtain the values of the stresses and strains for any other direction. These applications are excellent tools for teaching and learning the elastic problem in engineering degree courses | es_ES |
dc.description.abstract | [ES] Elasticidad Lineal es una disciplina que estudia los sólidos elásticos que, bajo fuerzas externas, generan una respuesta mecánica en régimen elástico y lineal. En particular, es de especial interés el estudio de las tensiones y las deformaciones en un punto cualquiera del sólido, lo que se conoce como problema elástico. En Elasticidad es necesario conocer el denominado estado tensional en el entorno diferencial de un punto del sólido elástico, así como las deformaciones asociadas a las tensiones actuantes.Con este fin, en el presente trabajo se presentan los laboratorios virtuales TENSIONES y DEFORMACIONES, elaborados con el paquete MATLAB a través de su interfaz gráfica de usuario (GUI). Estos dos laboratorios virtuales permiten representar los estados de tensiones y deformaciones en un punto a partir de unas variables introducidas por el usuario, pudiendo obtener también los valores de las tensiones y deformaciones para cualquier otra dirección. Estas aplicaciones constituyen una excelente herramienta de enseñanza y aprendizaje del problema elástico en las titulaciones de grado en ingeniería | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Modelling in Science Education and Learning | |
dc.rights | Reconocimiento - No comercial (by-nc) | es_ES |
dc.subject | Tridimensional Stress States | es_ES |
dc.subject | Intrinsic Components | es_ES |
dc.subject | Principal Stress Directions | es_ES |
dc.subject | Principal Streins | es_ES |
dc.subject | Cauchy’s Formula | es_ES |
dc.subject | Longitudinal Strains | es_ES |
dc.subject | Shearing Strains | es_ES |
dc.subject | Estados tensionales tridimensionales | es_ES |
dc.subject | Componentes intrínsecas | es_ES |
dc.subject | Tensiones y direcciones principales | es_ES |
dc.subject | Deformaciones principales | es_ES |
dc.subject | Fórmula de Cauchy | es_ES |
dc.subject | Deformaciones longitudinales | es_ES |
dc.subject | Distorsiones angulares | es_ES |
dc.title | Utilización de laboratorios virtuales para la enseñanza y el aprendizaje de la elasticidad | es_ES |
dc.title.alternative | Using virtual laboratories for teaching and learning in theory of elasticity | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2016-11-21T12:32:20Z | |
dc.identifier.doi | 10.4995/msel.2014.2089 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Jimenez Mocholi, AJ.; Gimenez Palomares, F.; Lapuebla Ferri, A. (2014). Utilización de laboratorios virtuales para la enseñanza y el aprendizaje de la elasticidad. Modelling in Science Education and Learning. 7:37-47. https://doi.org/10.4995/msel.2014.2089 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/msel.2014.2089 | es_ES |
dc.description.upvformatpinicio | 37 | es_ES |
dc.description.upvformatpfin | 47 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | |
dc.identifier.eissn | 1988-3145 | |
dc.description.references | • Bartolomé, A. R. (2004). Nuevas Tecnologías en el Aula. Guía de Supervivencia. ICE-Universitat de Barcelona. Ed. Graó de IRIF, S.L. Barcelona. | es_ES |
dc.description.references | Depcik, C., & Assanis, D. N. (2005). Graphical user interfaces in an engineering educational environment. Computer Applications in Engineering Education, 13(1), 48-59. doi:10.1002/cae.20029 | es_ES |
dc.description.references | • Duffy, T., Jonassen, K. (1992). Constructivism and the technology of instruction. Lawrence Erlbaum Associates. Hilsdale, New Jersey, USA. | es_ES |
dc.description.references | • Gere, J. M., Timoshenko, S. P (1992). Resistencia de Materiales. Ed. Paraninfo, Madrid. | es_ES |
dc.description.references | • Jiménez-Mocholí, A. J., Lapuebla-Ferri, A., Romero-García, M. e Ivorra-Chorro, S. (2012). Elasticidad y Resistencia de Materiales. Apuntes de clase para las titulaciones de grado en ingeniería. Editorial de la Universitat Politècnica de València, Valencia. | es_ES |
dc.description.references | • León, J. A., Vizcarro, C. (1997). Nuevas tecnologías para el aprendizaje. Ediciones Pirámide, Madrid. | es_ES |
dc.description.references | • Popov, E. P. (2000). Mecánica de Sólidos. Ed. Pearson Educación, Madrid. | es_ES |