Cobzaş, S: Functional Analysis in Asymmetric Normed Spaces. Springer, Basel (2013)
Künzi, HPA: Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology. In: Aull, CE, Lowen, R (eds.) Handbook of the History of General Topology, vol. 3, pp. 853-968. Kluwer Academic, Dordrecht (2001)
Reilly, IL, Subrhamanyam, PV, Vamanamurthy, MK: Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte Math. 93, 127-140 (1982)
[+]
Cobzaş, S: Functional Analysis in Asymmetric Normed Spaces. Springer, Basel (2013)
Künzi, HPA: Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology. In: Aull, CE, Lowen, R (eds.) Handbook of the History of General Topology, vol. 3, pp. 853-968. Kluwer Academic, Dordrecht (2001)
Reilly, IL, Subrhamanyam, PV, Vamanamurthy, MK: Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte Math. 93, 127-140 (1982)
Künzi, HPA, Schellekens, MP: On the Yoneda completion of a quasi-metric spaces. Theor. Comput. Sci. 278, 159-194 (2002)
Romaguera, S, Valero, O: Domain theoretic characterisations of quasi-metric completeness in terms of formal balls. Math. Struct. Comput. Sci. 20, 453-472 (2010)
Künzi, HPA: Nonsymmetric topology. In: Proc. Szekszárd Conf. Bolyai Society of Math. Studies, vol. 4, pp. 303-338 (1993)
García-Raffi, LM, Romaguera, S, Schellekens, MP: Applications of the complexity space to the general probabilistic divide and conquer algorithms. J. Math. Anal. Appl. 348, 346-355 (2008)
Stoltenberg, RA: Some properties of quasi-uniform spaces. Proc. Lond. Math. Soc. 17, 226-240 (1967)
Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976)
Kirk, WA: Caristi’s fixed point theorem and metric convexity. Colloq. Math. 36, 81-86 (1976)
Abdeljawad, T, Karapınar, E: Quasi-cone metric spaces and generalizations of Caristi Kirk’s theorem. Fixed Point Theory Appl. 2009, Article ID 574387 (2009)
Acar, O, Altun, I: Some generalizations of Caristi type fixed point theorem on partial metric spaces. Filomat 26(4), 833-837 (2012)
Acar, O, Altun, I, Romaguera, S: Caristi’s type mappings on complete partial metric spaces. Fixed Point Theory 14, 3-10 (2013)
Aydi, H, Karapınar, E, Kumam, P: A note on ‘Modified proof of Caristi’s fixed point theorem on partial metric spaces, Journal of Inequalities and Applications 2013, 2013:210’. J. Inequal. Appl. 2013, 355 (2013)
Cobzaş, S: Completeness in quasi-metric spaces and Ekeland variational principle. Topol. Appl. 158, 1073-1084 (2011)
Hadžić, O, Pap, E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht (2001)
Karapınar, E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011, 4 (2011)
Romaguera, S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010, Article ID 493298 (2010)
Park, S: On generalizations of the Ekeland-type variational principles. Nonlinear Anal. TMA 39, 881-889 (2000)
Du, W-S, Karapınar, E: A note on Caristi type cyclic maps: related results and applications. Fixed Point Theory Appl. 2013, 344 (2013)
Ali-Akbari, M, Honari, B, Pourmahdian, M, Rezaii, MM: The space of formal balls and models of quasi-metric spaces. Math. Struct. Comput. Sci. 19, 337-355 (2009)
Romaguera, S, Schellekens, M: Quasi-metric properties of complexity spaces. Topol. Appl. 98, 311-322 (1999)
Brøndsted, A: On a lemma of Bishop and Phelps. Pac. J. Math. 55, 335-341 (1974)
Brøndsted, A: Fixed points and partial order. Proc. Am. Math. Soc. 60, 365-366 (1976)
Smyth, MB: Quasi-uniformities: reconciling domains with metric spaces. In: Main, M, Melton, A, Mislove, M, Schmidt, D (eds.) Mathematical Foundations of Programming Language Semantics, 3rd Workshop, Tulane, 1987. Lecture Notes in Computer Science, vol. 298, pp. 236-253. Springer, Berlin (1988)
Cull, P, Flahive, M, Robson, R: Difference Equations: From Rabbits to Chaos. Springer, New York (2005)
Schellekens, M: The Smyth completion: a common foundation for denotational semantics and complexity analysis. Electron. Notes Theor. Comput. Sci. 1, 535-556 (1995)
García-Raffi, LM, Romaguera, S, Sánchez-Pérez, EA: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Model. 49, 1852-1868 (2009)
Rodríguez-López, J, Schellekens, MP, Valero, O: An extension of the dual complexity space and an application to computer science. Topol. Appl. 156, 3052-3061 (2009)
Romaguera, S, Schellekens, MP, Valero, O: The complexity space of partial functions: a connection between complexity analysis and denotational semantics. Int. J. Comput. Math. 88, 1819-1829 (2011)
[-]