- -

A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romaguera Bonilla, Salvador es_ES
dc.contributor.author Tirado Peláez, Pedro es_ES
dc.date.accessioned 2016-11-29T10:05:18Z
dc.date.available 2016-11-29T10:05:18Z
dc.date.issued 2015-10
dc.identifier.issn 1687-1812
dc.identifier.uri http://hdl.handle.net/10251/74739
dc.description.abstract We obtain a quasi-metric generalization of Caristi's fixed point theorem for a kind of complete quasi-metric spaces. With the help of a suitable modification of its proof, we deduce a characterization of Smyth complete quasi-metric spaces which provides a quasi-metric generalization of the well-known characterization of metric completeness due to Kirk. Some illustrative examples are also given. As an application, we deduce a procedure which allows to easily show the existence of solution for the recurrence equation of certain algorithms. es_ES
dc.description.sponsorship The authors are grateful to the reviewers for several suggestions which have allowed to improve the first version of the paper. This research is supported by the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01. en_EN
dc.language Inglés es_ES
dc.publisher SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND es_ES
dc.relation.ispartof Fixed Point Theory and Applications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fixed Point es_ES
dc.subject Quasi-metric es_ES
dc.subject Smyth complete es_ES
dc.subject Algorithm es_ES
dc.subject Recurrence equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s13663-015-0431-1
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2012-37894-C02-01/ES/METODOS TOPOLOGICOS EN HIPERESPACIOS Y MULTIFUNCIONES CONTRACTIVAS. CASI-METRICAS Y DOMINIOS CUANTITATIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports es_ES
dc.description.bibliographicCitation Romaguera Bonilla, S.; Tirado Peláez, P. (2015). A characterization of Smyth complete quasi-metric spaces via Caristi's fixed point theorem. Fixed Point Theory and Applications. 2015:183. https://doi.org/10.1186/s13663-015-0431-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://fixedpointtheoryandapplications.springeropen.com/articles/10.1186/s13663-015-0431-1 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2015:183 es_ES
dc.relation.senia 299803 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cobzaş, S: Functional Analysis in Asymmetric Normed Spaces. Springer, Basel (2013) es_ES
dc.description.references Künzi, HPA: Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology. In: Aull, CE, Lowen, R (eds.) Handbook of the History of General Topology, vol. 3, pp. 853-968. Kluwer Academic, Dordrecht (2001) es_ES
dc.description.references Reilly, IL, Subrhamanyam, PV, Vamanamurthy, MK: Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte Math. 93, 127-140 (1982) es_ES
dc.description.references Künzi, HPA, Schellekens, MP: On the Yoneda completion of a quasi-metric spaces. Theor. Comput. Sci. 278, 159-194 (2002) es_ES
dc.description.references Romaguera, S, Valero, O: Domain theoretic characterisations of quasi-metric completeness in terms of formal balls. Math. Struct. Comput. Sci. 20, 453-472 (2010) es_ES
dc.description.references Künzi, HPA: Nonsymmetric topology. In: Proc. Szekszárd Conf. Bolyai Society of Math. Studies, vol. 4, pp. 303-338 (1993) es_ES
dc.description.references García-Raffi, LM, Romaguera, S, Schellekens, MP: Applications of the complexity space to the general probabilistic divide and conquer algorithms. J. Math. Anal. Appl. 348, 346-355 (2008) es_ES
dc.description.references Stoltenberg, RA: Some properties of quasi-uniform spaces. Proc. Lond. Math. Soc. 17, 226-240 (1967) es_ES
dc.description.references Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976) es_ES
dc.description.references Kirk, WA: Caristi’s fixed point theorem and metric convexity. Colloq. Math. 36, 81-86 (1976) es_ES
dc.description.references Abdeljawad, T, Karapınar, E: Quasi-cone metric spaces and generalizations of Caristi Kirk’s theorem. Fixed Point Theory Appl. 2009, Article ID 574387 (2009) es_ES
dc.description.references Acar, O, Altun, I: Some generalizations of Caristi type fixed point theorem on partial metric spaces. Filomat 26(4), 833-837 (2012) es_ES
dc.description.references Acar, O, Altun, I, Romaguera, S: Caristi’s type mappings on complete partial metric spaces. Fixed Point Theory 14, 3-10 (2013) es_ES
dc.description.references Aydi, H, Karapınar, E, Kumam, P: A note on ‘Modified proof of Caristi’s fixed point theorem on partial metric spaces, Journal of Inequalities and Applications 2013, 2013:210’. J. Inequal. Appl. 2013, 355 (2013) es_ES
dc.description.references Cobzaş, S: Completeness in quasi-metric spaces and Ekeland variational principle. Topol. Appl. 158, 1073-1084 (2011) es_ES
dc.description.references Hadžić, O, Pap, E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht (2001) es_ES
dc.description.references Karapınar, E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011, 4 (2011) es_ES
dc.description.references Romaguera, S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010, Article ID 493298 (2010) es_ES
dc.description.references Park, S: On generalizations of the Ekeland-type variational principles. Nonlinear Anal. TMA 39, 881-889 (2000) es_ES
dc.description.references Du, W-S, Karapınar, E: A note on Caristi type cyclic maps: related results and applications. Fixed Point Theory Appl. 2013, 344 (2013) es_ES
dc.description.references Ali-Akbari, M, Honari, B, Pourmahdian, M, Rezaii, MM: The space of formal balls and models of quasi-metric spaces. Math. Struct. Comput. Sci. 19, 337-355 (2009) es_ES
dc.description.references Romaguera, S, Schellekens, M: Quasi-metric properties of complexity spaces. Topol. Appl. 98, 311-322 (1999) es_ES
dc.description.references Brøndsted, A: On a lemma of Bishop and Phelps. Pac. J. Math. 55, 335-341 (1974) es_ES
dc.description.references Brøndsted, A: Fixed points and partial order. Proc. Am. Math. Soc. 60, 365-366 (1976) es_ES
dc.description.references Smyth, MB: Quasi-uniformities: reconciling domains with metric spaces. In: Main, M, Melton, A, Mislove, M, Schmidt, D (eds.) Mathematical Foundations of Programming Language Semantics, 3rd Workshop, Tulane, 1987. Lecture Notes in Computer Science, vol. 298, pp. 236-253. Springer, Berlin (1988) es_ES
dc.description.references Cull, P, Flahive, M, Robson, R: Difference Equations: From Rabbits to Chaos. Springer, New York (2005) es_ES
dc.description.references Schellekens, M: The Smyth completion: a common foundation for denotational semantics and complexity analysis. Electron. Notes Theor. Comput. Sci. 1, 535-556 (1995) es_ES
dc.description.references García-Raffi, LM, Romaguera, S, Sánchez-Pérez, EA: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Model. 49, 1852-1868 (2009) es_ES
dc.description.references Rodríguez-López, J, Schellekens, MP, Valero, O: An extension of the dual complexity space and an application to computer science. Topol. Appl. 156, 3052-3061 (2009) es_ES
dc.description.references Romaguera, S, Schellekens, MP, Valero, O: The complexity space of partial functions: a connection between complexity analysis and denotational semantics. Int. J. Comput. Math. 88, 1819-1829 (2011) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem