- -

BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES

Mostrar el registro completo del ítem

Carando, D.; Defant, A.; Sevilla Peris, P. (2014). BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES. Analysis and PDE. 7(2):513-527. https://doi.org/10.2140/apde.2014.7.513

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/74826

Ficheros en el ítem

Metadatos del ítem

Título: BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES
Autor: Carando, Daniel Defant, Andreas Sevilla Peris, Pablo
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Fecha difusión:
Resumen:
[EN] The Bohr–Bohnenblust–Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series P n ann −s converges uniformly but not absolutely is less than or equal to 1 2 , ...[+]
Palabras clave: Vector-valued Dirichlet series , Vector-valued H-p spaces , Banach spaces
Derechos de uso: Reserva de todos los derechos
Fuente:
Analysis and PDE. (issn: 2157-5045 ) (eissn: 1948-206X )
DOI: 10.2140/apde.2014.7.513
Editorial:
Mathematical Sciences Publishers (MSP)
Versión del editor: https://dx.doi.org/10.2140/apde.2014.7.513
Código del Proyecto:
info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/
info:eu-repo/grantAgreement/UBA/UBACyT/1-746/
info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/
info:eu-repo/grantAgreement/CONICET//PIP 0624/
info:eu-repo/grantAgreement/UPV//SP20120700/
Descripción: PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2014 Mathematical Sciences Publishers
Agradecimientos:
Carando was partially supported by CONICET PIP 0624, PICT 2011-1456 and UBACyT 1-746. Defant and Sevilla-Peris were supported by MICINN project MTM2011-22417. Sevilla-Peris was partially supported by UPV-SP20120700.
Tipo: Artículo

References

Aleman, A., Olsen, J.-F., & Saksman, E. (2013). Fourier Multipliers for Hardy Spaces of Dirichlet Series. International Mathematics Research Notices, 2014(16), 4368-4378. doi:10.1093/imrn/rnt080

Bayart, F. (2002). Hardy Spaces of Dirichlet Series and Their Composition Operators. Monatshefte f?r Mathematik, 136(3), 203-236. doi:10.1007/s00605-002-0470-7

Blasco, O., & Xu, Q. (1991). Interpolation between vector-valued Hardy spaces. Journal of Functional Analysis, 102(2), 331-359. doi:10.1016/0022-1236(91)90125-o [+]
Aleman, A., Olsen, J.-F., & Saksman, E. (2013). Fourier Multipliers for Hardy Spaces of Dirichlet Series. International Mathematics Research Notices, 2014(16), 4368-4378. doi:10.1093/imrn/rnt080

Bayart, F. (2002). Hardy Spaces of Dirichlet Series and Their Composition Operators. Monatshefte f?r Mathematik, 136(3), 203-236. doi:10.1007/s00605-002-0470-7

Blasco, O., & Xu, Q. (1991). Interpolation between vector-valued Hardy spaces. Journal of Functional Analysis, 102(2), 331-359. doi:10.1016/0022-1236(91)90125-o

Bohnenblust, H. F., & Hille, E. (1931). On the Absolute Convergence of Dirichlet Series. The Annals of Mathematics, 32(3), 600. doi:10.2307/1968255

Bohr, H. (1913). Über die gleichmäßige Konvergenz Dirichletscher Reihen. Journal für die reine und angewandte Mathematik (Crelles Journal), 1913(143), 203-211. doi:10.1515/crll.1913.143.203

Bombal, F. (2004). Multilinear extensions of Grothendieck’s theorem. The Quarterly Journal of Mathematics, 55(4), 441-450. doi:10.1093/qjmath/55.4.441

Cole, B. J., & Gamelin, T. W. (1986). Representing Measures and Hardy Spaces for the Infinite Polydisk Algebra. Proceedings of the London Mathematical Society, s3-53(1), 112-142. doi:10.1112/plms/s3-53.1.112

Defant, A., & Sevilla-Peris, P. (2011). Convergence of Dirichlet polynomials in Banach spaces. Transactions of the American Mathematical Society, 363(02), 681-681. doi:10.1090/s0002-9947-2010-05146-3

Defant, A., García, D., Maestre, M., & Pérez-García, D. (2008). Bohr’s strip for vector valued Dirichlet series. Mathematische Annalen, 342(3), 533-555. doi:10.1007/s00208-008-0246-z

Defant, A., Maestre, M., & Prengel, C. (2009). Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. Journal für die reine und angewandte Mathematik (Crelles Journal), 2009(634). doi:10.1515/crelle.2009.068

Defant, A., Popa, D., & Schwarting, U. (2010). Coordinatewise multiple summing operators in Banach spaces. Journal of Functional Analysis, 259(1), 220-242. doi:10.1016/j.jfa.2010.01.008

Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6

Lindenstrauss, J., & Tzafriri, L. (1977). Classical Banach Spaces I. doi:10.1007/978-3-642-66557-8

Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach Spaces II. doi:10.1007/978-3-662-35347-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem