- -

BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carando, Daniel es_ES
dc.contributor.author Defant, Andreas es_ES
dc.contributor.author Sevilla Peris, Pablo es_ES
dc.date.accessioned 2016-12-01T08:45:55Z
dc.date.available 2016-12-01T08:45:55Z
dc.date.issued 2014
dc.identifier.issn 2157-5045
dc.identifier.uri http://hdl.handle.net/10251/74826
dc.description PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2014 Mathematical Sciences Publishers es_ES
dc.description.abstract [EN] The Bohr–Bohnenblust–Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series P n ann −s converges uniformly but not absolutely is less than or equal to 1 2 , and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H∞ equals 1 2 . By a surprising fact of Bayart the same result holds true if H∞ is replaced by any Hardy space Hp, 1 ≤ p < ∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr’s strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1 − 1/Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞(X) equals 1 − 1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp(X), 1 ≤ p < ∞ es_ES
dc.description.sponsorship Carando was partially supported by CONICET PIP 0624, PICT 2011-1456 and UBACyT 1-746. Defant and Sevilla-Peris were supported by MICINN project MTM2011-22417. Sevilla-Peris was partially supported by UPV-SP20120700. en_EN
dc.language Inglés es_ES
dc.publisher Mathematical Sciences Publishers (MSP) es_ES
dc.relation.ispartof Analysis and PDE es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Vector-valued Dirichlet series es_ES
dc.subject Vector-valued H-p spaces es_ES
dc.subject Banach spaces es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2140/apde.2014.7.513
dc.relation.projectID info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UBA/UBACyT/1-746/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONICET//PIP 0624/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20120700/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Carando, D.; Defant, A.; Sevilla Peris, P. (2014). BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES. Analysis and PDE. 7(2):513-527. https://doi.org/10.2140/apde.2014.7.513 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.2140/apde.2014.7.513 es_ES
dc.description.upvformatpinicio 513 es_ES
dc.description.upvformatpfin 527 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 286440 es_ES
dc.identifier.eissn 1948-206X
dc.contributor.funder Agencia Nacional de Promoción Científica y Tecnológica, Argentina es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina es_ES
dc.contributor.funder Universidad de Buenos Aires es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Aleman, A., Olsen, J.-F., & Saksman, E. (2013). Fourier Multipliers for Hardy Spaces of Dirichlet Series. International Mathematics Research Notices, 2014(16), 4368-4378. doi:10.1093/imrn/rnt080 es_ES
dc.description.references Bayart, F. (2002). Hardy Spaces of Dirichlet Series and Their Composition Operators. Monatshefte f?r Mathematik, 136(3), 203-236. doi:10.1007/s00605-002-0470-7 es_ES
dc.description.references Blasco, O., & Xu, Q. (1991). Interpolation between vector-valued Hardy spaces. Journal of Functional Analysis, 102(2), 331-359. doi:10.1016/0022-1236(91)90125-o es_ES
dc.description.references Bohnenblust, H. F., & Hille, E. (1931). On the Absolute Convergence of Dirichlet Series. The Annals of Mathematics, 32(3), 600. doi:10.2307/1968255 es_ES
dc.description.references Bohr, H. (1913). Über die gleichmäßige Konvergenz Dirichletscher Reihen. Journal für die reine und angewandte Mathematik (Crelles Journal), 1913(143), 203-211. doi:10.1515/crll.1913.143.203 es_ES
dc.description.references Bombal, F. (2004). Multilinear extensions of Grothendieck’s theorem. The Quarterly Journal of Mathematics, 55(4), 441-450. doi:10.1093/qjmath/55.4.441 es_ES
dc.description.references Cole, B. J., & Gamelin, T. W. (1986). Representing Measures and Hardy Spaces for the Infinite Polydisk Algebra. Proceedings of the London Mathematical Society, s3-53(1), 112-142. doi:10.1112/plms/s3-53.1.112 es_ES
dc.description.references Defant, A., & Sevilla-Peris, P. (2011). Convergence of Dirichlet polynomials in Banach spaces. Transactions of the American Mathematical Society, 363(02), 681-681. doi:10.1090/s0002-9947-2010-05146-3 es_ES
dc.description.references Defant, A., García, D., Maestre, M., & Pérez-García, D. (2008). Bohr’s strip for vector valued Dirichlet series. Mathematische Annalen, 342(3), 533-555. doi:10.1007/s00208-008-0246-z es_ES
dc.description.references Defant, A., Maestre, M., & Prengel, C. (2009). Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. Journal für die reine und angewandte Mathematik (Crelles Journal), 2009(634). doi:10.1515/crelle.2009.068 es_ES
dc.description.references Defant, A., Popa, D., & Schwarting, U. (2010). Coordinatewise multiple summing operators in Banach spaces. Journal of Functional Analysis, 259(1), 220-242. doi:10.1016/j.jfa.2010.01.008 es_ES
dc.description.references Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 es_ES
dc.description.references Lindenstrauss, J., & Tzafriri, L. (1977). Classical Banach Spaces I. doi:10.1007/978-3-642-66557-8 es_ES
dc.description.references Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach Spaces II. doi:10.1007/978-3-662-35347-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem