Mostrar el registro sencillo del ítem
dc.contributor.author | Carando, Daniel | es_ES |
dc.contributor.author | Defant, Andreas | es_ES |
dc.contributor.author | Sevilla Peris, Pablo | es_ES |
dc.date.accessioned | 2016-12-01T08:45:55Z | |
dc.date.available | 2016-12-01T08:45:55Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2157-5045 | |
dc.identifier.uri | http://hdl.handle.net/10251/74826 | |
dc.description | PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing http://msp.org/ © 2014 Mathematical Sciences Publishers | es_ES |
dc.description.abstract | [EN] The Bohr–Bohnenblust–Hille theorem states that the width of the strip in the complex plane on which an ordinary Dirichlet series P n ann −s converges uniformly but not absolutely is less than or equal to 1 2 , and this estimate is optimal. Equivalently, the supremum of the absolute convergence abscissas of all Dirichlet series in the Hardy space H∞ equals 1 2 . By a surprising fact of Bayart the same result holds true if H∞ is replaced by any Hardy space Hp, 1 ≤ p < ∞, of Dirichlet series. For Dirichlet series with coefficients in a Banach space X the maximal width of Bohr’s strips depend on the geometry of X; Defant, García, Maestre and Pérez-García proved that such maximal width equals 1 − 1/Cot X, where Cot X denotes the maximal cotype of X. Equivalently, the supremum over the absolute convergence abscissas of all Dirichlet series in the vector-valued Hardy space H∞(X) equals 1 − 1/Cot X. In this article we show that this result remains true if H∞(X) is replaced by the larger class Hp(X), 1 ≤ p < ∞ | es_ES |
dc.description.sponsorship | Carando was partially supported by CONICET PIP 0624, PICT 2011-1456 and UBACyT 1-746. Defant and Sevilla-Peris were supported by MICINN project MTM2011-22417. Sevilla-Peris was partially supported by UPV-SP20120700. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Mathematical Sciences Publishers (MSP) | es_ES |
dc.relation.ispartof | Analysis and PDE | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Vector-valued Dirichlet series | es_ES |
dc.subject | Vector-valued H-p spaces | es_ES |
dc.subject | Banach spaces | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.2140/apde.2014.7.513 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANPCyT//PICT-2011-1456/AR/Análisis multilineal y complejo en espacios de Banach/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UBA/UBACyT/1-746/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONICET//PIP 0624/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//SP20120700/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural | es_ES |
dc.description.bibliographicCitation | Carando, D.; Defant, A.; Sevilla Peris, P. (2014). BOHR'S ABSOLUTE CONVERGENCE PROBLEM FOR Hp-DIRICHLET SERIES IN BANACH SPACES. Analysis and PDE. 7(2):513-527. https://doi.org/10.2140/apde.2014.7.513 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.2140/apde.2014.7.513 | es_ES |
dc.description.upvformatpinicio | 513 | es_ES |
dc.description.upvformatpfin | 527 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 286440 | es_ES |
dc.identifier.eissn | 1948-206X | |
dc.contributor.funder | Agencia Nacional de Promoción Científica y Tecnológica, Argentina | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina | es_ES |
dc.contributor.funder | Universidad de Buenos Aires | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Aleman, A., Olsen, J.-F., & Saksman, E. (2013). Fourier Multipliers for Hardy Spaces of Dirichlet Series. International Mathematics Research Notices, 2014(16), 4368-4378. doi:10.1093/imrn/rnt080 | es_ES |
dc.description.references | Bayart, F. (2002). Hardy Spaces of Dirichlet Series and Their Composition Operators. Monatshefte f?r Mathematik, 136(3), 203-236. doi:10.1007/s00605-002-0470-7 | es_ES |
dc.description.references | Blasco, O., & Xu, Q. (1991). Interpolation between vector-valued Hardy spaces. Journal of Functional Analysis, 102(2), 331-359. doi:10.1016/0022-1236(91)90125-o | es_ES |
dc.description.references | Bohnenblust, H. F., & Hille, E. (1931). On the Absolute Convergence of Dirichlet Series. The Annals of Mathematics, 32(3), 600. doi:10.2307/1968255 | es_ES |
dc.description.references | Bohr, H. (1913). Über die gleichmäßige Konvergenz Dirichletscher Reihen. Journal für die reine und angewandte Mathematik (Crelles Journal), 1913(143), 203-211. doi:10.1515/crll.1913.143.203 | es_ES |
dc.description.references | Bombal, F. (2004). Multilinear extensions of Grothendieck’s theorem. The Quarterly Journal of Mathematics, 55(4), 441-450. doi:10.1093/qjmath/55.4.441 | es_ES |
dc.description.references | Cole, B. J., & Gamelin, T. W. (1986). Representing Measures and Hardy Spaces for the Infinite Polydisk Algebra. Proceedings of the London Mathematical Society, s3-53(1), 112-142. doi:10.1112/plms/s3-53.1.112 | es_ES |
dc.description.references | Defant, A., & Sevilla-Peris, P. (2011). Convergence of Dirichlet polynomials in Banach spaces. Transactions of the American Mathematical Society, 363(02), 681-681. doi:10.1090/s0002-9947-2010-05146-3 | es_ES |
dc.description.references | Defant, A., García, D., Maestre, M., & Pérez-García, D. (2008). Bohr’s strip for vector valued Dirichlet series. Mathematische Annalen, 342(3), 533-555. doi:10.1007/s00208-008-0246-z | es_ES |
dc.description.references | Defant, A., Maestre, M., & Prengel, C. (2009). Domains of convergence for monomial expansions of holomorphic functions in infinitely many variables. Journal für die reine und angewandte Mathematik (Crelles Journal), 2009(634). doi:10.1515/crelle.2009.068 | es_ES |
dc.description.references | Defant, A., Popa, D., & Schwarting, U. (2010). Coordinatewise multiple summing operators in Banach spaces. Journal of Functional Analysis, 259(1), 220-242. doi:10.1016/j.jfa.2010.01.008 | es_ES |
dc.description.references | Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6 | es_ES |
dc.description.references | Lindenstrauss, J., & Tzafriri, L. (1977). Classical Banach Spaces I. doi:10.1007/978-3-642-66557-8 | es_ES |
dc.description.references | Lindenstrauss, J., & Tzafriri, L. (1979). Classical Banach Spaces II. doi:10.1007/978-3-662-35347-9 | es_ES |