- -

Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations

Mostrar el registro completo del ítem

Vikingsson, LKA.; Sancho-Tello Valls, M.; Ruiz Sauri, A.; Martínez Díaz, S.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Carda, C.... (2015). Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations. International Journal of Artificial Organs. 38(12):659-666. https://doi.org/10.5301/ijao.5000457

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/74862

Ficheros en el ítem

Metadatos del ítem

Título: Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations
Autor: Vikingsson, Line Karina Alva Sancho-Tello Valls, Maria Ruiz Sauri, Amparo Martínez Díaz, Santos Gómez-Tejedor, José Antonio Gallego Ferrer, Gloria Carda, Carmen Monllau Garcia, Joan Carles Gómez Ribelles, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for ...[+]
Palabras clave: Biomaterials , Cartilage engineering , Tissue engineering , Polycaprolactone , Subchondral bone alterations
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Artificial Organs. (issn: 0391-3988 )
DOI: 10.5301/ijao.5000457
Editorial:
Wichtig
Versión del editor: http://dx.doi.org/10.5301/ijao.5000457
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-4-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/
info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/
Agradecimientos:
This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the MAT2013-46467-C4-R project (including FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i ...[+]
Tipo: Artículo

References

Steadman, J. R., Rodkey, W. G., & Rodrigo, J. J. (2001). Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clinical Orthopaedics and Related Research, 391, S362-S369. doi:10.1097/00003086-200110001-00033

Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477-484. doi:10.1053/jars.2003.50112

Kon, E., Filardo, G., Berruto, M., Benazzo, F., Zanon, G., Della Villa, S., & Marcacci, M. (2011). Articular Cartilage Treatment in High-Level Male Soccer Players. The American Journal of Sports Medicine, 39(12), 2549-2557. doi:10.1177/0363546511420688 [+]
Steadman, J. R., Rodkey, W. G., & Rodrigo, J. J. (2001). Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clinical Orthopaedics and Related Research, 391, S362-S369. doi:10.1097/00003086-200110001-00033

Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477-484. doi:10.1053/jars.2003.50112

Kon, E., Filardo, G., Berruto, M., Benazzo, F., Zanon, G., Della Villa, S., & Marcacci, M. (2011). Articular Cartilage Treatment in High-Level Male Soccer Players. The American Journal of Sports Medicine, 39(12), 2549-2557. doi:10.1177/0363546511420688

Basad, E., Ishaque, B., Bachmann, G., Stürz, H., & Steinmeyer, J. (2010). Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 519-527. doi:10.1007/s00167-009-1028-1

Quarch, V. M. A., Enderle, E., Lotz, J., & Frosch, K.-H. (2014). Fate of large donor site defects in osteochondral transfer procedures in the knee joint with and without TruFit Plugs. Archives of Orthopaedic and Trauma Surgery, 134(5), 657-666. doi:10.1007/s00402-014-1930-y

Duda, G. N., Maldonado, Z. M., Klein, P., Heller, M. O. W., Burns, J., & Bail, H. (2005). On the influence of mechanical conditions in osteochondral defect healing. Journal of Biomechanics, 38(4), 843-851. doi:10.1016/j.jbiomech.2004.04.034

Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529

Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489

Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6

Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0

Bryant, S. J., Chowdhury, T. T., Lee, D. A., Bader, D. L., & Anseth, K. S. (2004). Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 32(3), 407-417. doi:10.1023/b:abme.0000017535.00602.ca

Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017

Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033

Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421

Buschmann, M. D., Kim, Y.-J., Wong, M., Frank, E., Hunziker, E. B., & Grodzinsky, A. J. (1999). Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow1. Archives of Biochemistry and Biophysics, 366(1), 1-7. doi:10.1006/abbi.1999.1197

Gelber, P. E., Batista, J., Millan-Billi, A., Patthauer, L., Vera, S., Gomez-Masdeu, M., & Monllau, J. C. (2014). Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue. The Knee, 21(4), 827-832. doi:10.1016/j.knee.2014.04.013

Gomoll, A. H., Madry, H., Knutsen, G., van Dijk, N., Seil, R., Brittberg, M., & Kon, E. (2010). The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 434-447. doi:10.1007/s00167-010-1072-x

Kon, E., Filardo, G., Perdisa, F., Venieri, G., & Marcacci, M. (2014). Clinical results of multilayered biomaterials for osteochondral regeneration. Journal of Experimental Orthopaedics, 1(1). doi:10.1186/s40634-014-0010-0

Orth, P., Cucchiarini, M., Kohn, D., & Madry, H. (2013). Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence. European Cells and Materials, 25, 299-316. doi:10.22203/ecm.v025a21

Kreuz, P. C., Steinwachs, M. R., Erggelet, C., Krause, S. J., Konrad, G., Uhl, M., & Südkamp, N. (2006). Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis and Cartilage, 14(11), 1119-1125. doi:10.1016/j.joca.2006.05.003

Vikingsson, L., Claessens, B., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Journal of the Mechanical Behavior of Biomedical Materials, 48, 60-69. doi:10.1016/j.jmbbm.2015.03.021

Vikingsson, L., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics, 48(7), 1310-1317. doi:10.1016/j.jbiomech.2015.02.013

Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024

Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448

Mow, V. C., Holmes, M. H., & Michael Lai, W. (1984). Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics, 17(5), 377-394. doi:10.1016/0021-9290(84)90031-9

Granero-Moltó, F., Ripalda-Cemborain, P., Izal-Azcarate, I., Crespo-Cullell, I., Duart-Vicente, J., Deplaine, H., … Mora-Gasque, G. (2013). Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage, 21, S116. doi:10.1016/j.joca.2013.02.246

Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem