Steadman, J. R., Rodkey, W. G., & Rodrigo, J. J. (2001). Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clinical Orthopaedics and Related Research, 391, S362-S369. doi:10.1097/00003086-200110001-00033
Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477-484. doi:10.1053/jars.2003.50112
Kon, E., Filardo, G., Berruto, M., Benazzo, F., Zanon, G., Della Villa, S., & Marcacci, M. (2011). Articular Cartilage Treatment in High-Level Male Soccer Players. The American Journal of Sports Medicine, 39(12), 2549-2557. doi:10.1177/0363546511420688
[+]
Steadman, J. R., Rodkey, W. G., & Rodrigo, J. J. (2001). Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clinical Orthopaedics and Related Research, 391, S362-S369. doi:10.1097/00003086-200110001-00033
Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477-484. doi:10.1053/jars.2003.50112
Kon, E., Filardo, G., Berruto, M., Benazzo, F., Zanon, G., Della Villa, S., & Marcacci, M. (2011). Articular Cartilage Treatment in High-Level Male Soccer Players. The American Journal of Sports Medicine, 39(12), 2549-2557. doi:10.1177/0363546511420688
Basad, E., Ishaque, B., Bachmann, G., Stürz, H., & Steinmeyer, J. (2010). Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 519-527. doi:10.1007/s00167-009-1028-1
Quarch, V. M. A., Enderle, E., Lotz, J., & Frosch, K.-H. (2014). Fate of large donor site defects in osteochondral transfer procedures in the knee joint with and without TruFit Plugs. Archives of Orthopaedic and Trauma Surgery, 134(5), 657-666. doi:10.1007/s00402-014-1930-y
Duda, G. N., Maldonado, Z. M., Klein, P., Heller, M. O. W., Burns, J., & Bail, H. (2005). On the influence of mechanical conditions in osteochondral defect healing. Journal of Biomechanics, 38(4), 843-851. doi:10.1016/j.jbiomech.2004.04.034
Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529
Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489
Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6
Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0
Bryant, S. J., Chowdhury, T. T., Lee, D. A., Bader, D. L., & Anseth, K. S. (2004). Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 32(3), 407-417. doi:10.1023/b:abme.0000017535.00602.ca
Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017
Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033
Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421
Buschmann, M. D., Kim, Y.-J., Wong, M., Frank, E., Hunziker, E. B., & Grodzinsky, A. J. (1999). Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow1. Archives of Biochemistry and Biophysics, 366(1), 1-7. doi:10.1006/abbi.1999.1197
Gelber, P. E., Batista, J., Millan-Billi, A., Patthauer, L., Vera, S., Gomez-Masdeu, M., & Monllau, J. C. (2014). Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue. The Knee, 21(4), 827-832. doi:10.1016/j.knee.2014.04.013
Gomoll, A. H., Madry, H., Knutsen, G., van Dijk, N., Seil, R., Brittberg, M., & Kon, E. (2010). The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 434-447. doi:10.1007/s00167-010-1072-x
Kon, E., Filardo, G., Perdisa, F., Venieri, G., & Marcacci, M. (2014). Clinical results of multilayered biomaterials for osteochondral regeneration. Journal of Experimental Orthopaedics, 1(1). doi:10.1186/s40634-014-0010-0
Orth, P., Cucchiarini, M., Kohn, D., & Madry, H. (2013). Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence. European Cells and Materials, 25, 299-316. doi:10.22203/ecm.v025a21
Kreuz, P. C., Steinwachs, M. R., Erggelet, C., Krause, S. J., Konrad, G., Uhl, M., & Südkamp, N. (2006). Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis and Cartilage, 14(11), 1119-1125. doi:10.1016/j.joca.2006.05.003
Vikingsson, L., Claessens, B., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Journal of the Mechanical Behavior of Biomedical Materials, 48, 60-69. doi:10.1016/j.jmbbm.2015.03.021
Vikingsson, L., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics, 48(7), 1310-1317. doi:10.1016/j.jbiomech.2015.02.013
Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024
Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448
Mow, V. C., Holmes, M. H., & Michael Lai, W. (1984). Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics, 17(5), 377-394. doi:10.1016/0021-9290(84)90031-9
Granero-Moltó, F., Ripalda-Cemborain, P., Izal-Azcarate, I., Crespo-Cullell, I., Duart-Vicente, J., Deplaine, H., … Mora-Gasque, G. (2013). Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage, 21, S116. doi:10.1016/j.joca.2013.02.246
Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404
[-]