- -

Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vikingsson, Line Karina Alva es_ES
dc.contributor.author Sancho-Tello Valls, Maria es_ES
dc.contributor.author Ruiz Sauri, Amparo es_ES
dc.contributor.author Martínez Díaz, Santos es_ES
dc.contributor.author Gómez-Tejedor, José Antonio es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.contributor.author Carda, Carmen es_ES
dc.contributor.author Monllau Garcia, Joan Carles es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2016-12-01T12:29:40Z
dc.date.available 2016-12-01T12:29:40Z
dc.date.issued 2015
dc.identifier.issn 0391-3988
dc.identifier.uri http://hdl.handle.net/10251/74862
dc.description.abstract Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods: The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Results: For both groups most of the defects (75%) showed an articular surface that was completely or almost completely repaired with a neotissue. Nevertheless, the surface had a rougher appearance than controls and the repair tissue was immature. In the trials with solely scaffold implantation, severe subchondral bone alterations were seen with many large nodular formations. These alterations were ameliorated when implanting the scaffold with a subchondral bone anchoring pin. Discussions: The results show that tissue repair is improved by implanting a PCL scaffold compared to solely microfracture surgery, and most importantly, that subchondral bone alterations, normally seen after microfracture surgery, were partially prevented when implanting the PCL scaffold with a fixation system to the subchondral bone. es_ES
dc.description.sponsorship This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the MAT2013-46467-C4-R project (including FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. en_EN
dc.language Inglés es_ES
dc.publisher Wichtig es_ES
dc.relation.ispartof International Journal of Artificial Organs es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomaterials es_ES
dc.subject Cartilage engineering es_ES
dc.subject Tissue engineering es_ES
dc.subject Polycaprolactone es_ES
dc.subject Subchondral bone alterations es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5301/ijao.5000457
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-4-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Vikingsson, LKA.; Sancho-Tello Valls, M.; Ruiz Sauri, A.; Martínez Díaz, S.; Gómez-Tejedor, JA.; Gallego Ferrer, G.; Carda, C.... (2015). Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations. International Journal of Artificial Organs. 38(12):659-666. https://doi.org/10.5301/ijao.5000457 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.5301/ijao.5000457 es_ES
dc.description.upvformatpinicio 659 es_ES
dc.description.upvformatpfin 666 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 38 es_ES
dc.description.issue 12 es_ES
dc.relation.senia 306045 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina es_ES
dc.description.references Steadman, J. R., Rodkey, W. G., & Rodrigo, J. J. (2001). Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clinical Orthopaedics and Related Research, 391, S362-S369. doi:10.1097/00003086-200110001-00033 es_ES
dc.description.references Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477-484. doi:10.1053/jars.2003.50112 es_ES
dc.description.references Kon, E., Filardo, G., Berruto, M., Benazzo, F., Zanon, G., Della Villa, S., & Marcacci, M. (2011). Articular Cartilage Treatment in High-Level Male Soccer Players. The American Journal of Sports Medicine, 39(12), 2549-2557. doi:10.1177/0363546511420688 es_ES
dc.description.references Basad, E., Ishaque, B., Bachmann, G., Stürz, H., & Steinmeyer, J. (2010). Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 519-527. doi:10.1007/s00167-009-1028-1 es_ES
dc.description.references Quarch, V. M. A., Enderle, E., Lotz, J., & Frosch, K.-H. (2014). Fate of large donor site defects in osteochondral transfer procedures in the knee joint with and without TruFit Plugs. Archives of Orthopaedic and Trauma Surgery, 134(5), 657-666. doi:10.1007/s00402-014-1930-y es_ES
dc.description.references Duda, G. N., Maldonado, Z. M., Klein, P., Heller, M. O. W., Burns, J., & Bail, H. (2005). On the influence of mechanical conditions in osteochondral defect healing. Journal of Biomechanics, 38(4), 843-851. doi:10.1016/j.jbiomech.2004.04.034 es_ES
dc.description.references Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529 es_ES
dc.description.references Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489 es_ES
dc.description.references Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6 es_ES
dc.description.references Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0 es_ES
dc.description.references Bryant, S. J., Chowdhury, T. T., Lee, D. A., Bader, D. L., & Anseth, K. S. (2004). Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 32(3), 407-417. doi:10.1023/b:abme.0000017535.00602.ca es_ES
dc.description.references Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017 es_ES
dc.description.references Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033 es_ES
dc.description.references Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421 es_ES
dc.description.references Buschmann, M. D., Kim, Y.-J., Wong, M., Frank, E., Hunziker, E. B., & Grodzinsky, A. J. (1999). Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow1. Archives of Biochemistry and Biophysics, 366(1), 1-7. doi:10.1006/abbi.1999.1197 es_ES
dc.description.references Gelber, P. E., Batista, J., Millan-Billi, A., Patthauer, L., Vera, S., Gomez-Masdeu, M., & Monllau, J. C. (2014). Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue. The Knee, 21(4), 827-832. doi:10.1016/j.knee.2014.04.013 es_ES
dc.description.references Gomoll, A. H., Madry, H., Knutsen, G., van Dijk, N., Seil, R., Brittberg, M., & Kon, E. (2010). The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 434-447. doi:10.1007/s00167-010-1072-x es_ES
dc.description.references Kon, E., Filardo, G., Perdisa, F., Venieri, G., & Marcacci, M. (2014). Clinical results of multilayered biomaterials for osteochondral regeneration. Journal of Experimental Orthopaedics, 1(1). doi:10.1186/s40634-014-0010-0 es_ES
dc.description.references Orth, P., Cucchiarini, M., Kohn, D., & Madry, H. (2013). Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence. European Cells and Materials, 25, 299-316. doi:10.22203/ecm.v025a21 es_ES
dc.description.references Kreuz, P. C., Steinwachs, M. R., Erggelet, C., Krause, S. J., Konrad, G., Uhl, M., & Südkamp, N. (2006). Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis and Cartilage, 14(11), 1119-1125. doi:10.1016/j.joca.2006.05.003 es_ES
dc.description.references Vikingsson, L., Claessens, B., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Journal of the Mechanical Behavior of Biomedical Materials, 48, 60-69. doi:10.1016/j.jmbbm.2015.03.021 es_ES
dc.description.references Vikingsson, L., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics, 48(7), 1310-1317. doi:10.1016/j.jbiomech.2015.02.013 es_ES
dc.description.references Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024 es_ES
dc.description.references Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 es_ES
dc.description.references Mow, V. C., Holmes, M. H., & Michael Lai, W. (1984). Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics, 17(5), 377-394. doi:10.1016/0021-9290(84)90031-9 es_ES
dc.description.references Granero-Moltó, F., Ripalda-Cemborain, P., Izal-Azcarate, I., Crespo-Cullell, I., Duart-Vicente, J., Deplaine, H., … Mora-Gasque, G. (2013). Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage, 21, S116. doi:10.1016/j.joca.2013.02.246 es_ES
dc.description.references Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem