Mostrar el registro sencillo del ítem
dc.contributor.author | Vikingsson, Line Karina Alva | es_ES |
dc.contributor.author | Sancho-Tello Valls, Maria | es_ES |
dc.contributor.author | Ruiz Sauri, Amparo | es_ES |
dc.contributor.author | Martínez Díaz, Santos | es_ES |
dc.contributor.author | Gómez-Tejedor, José Antonio | es_ES |
dc.contributor.author | Gallego-Ferrer, Gloria | es_ES |
dc.contributor.author | Carda, Carmen | es_ES |
dc.contributor.author | Monllau Garcia, Joan Carles | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.date.accessioned | 2016-12-01T12:29:40Z | |
dc.date.available | 2016-12-01T12:29:40Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0391-3988 | |
dc.identifier.uri | http://hdl.handle.net/10251/74862 | |
dc.description.abstract | Purpose: Articular cartilage has limited repair capacity. Two different implant devices for articular cartilage regeneration were tested in vivo in a sheep model to evaluate the effect of subchondral bone anchoring for tissue repair. Methods: The implants were placed with press-fit technique in a cartilage defect after microfracture surgery in the femoral condyle of the knee joint of the sheep and histologic and mechanical evaluation was done 4.5 months later. The first group consisted of a biodegradable polycaprolactone (PCL) scaffold with double porosity. The second test group consisted of a PCL scaffold attached to a poly(L-lactic acid) (PLLA) pin anchored to the subchondral bone. Results: For both groups most of the defects (75%) showed an articular surface that was completely or almost completely repaired with a neotissue. Nevertheless, the surface had a rougher appearance than controls and the repair tissue was immature. In the trials with solely scaffold implantation, severe subchondral bone alterations were seen with many large nodular formations. These alterations were ameliorated when implanting the scaffold with a subchondral bone anchoring pin. Discussions: The results show that tissue repair is improved by implanting a PCL scaffold compared to solely microfracture surgery, and most importantly, that subchondral bone alterations, normally seen after microfracture surgery, were partially prevented when implanting the PCL scaffold with a fixation system to the subchondral bone. | es_ES |
dc.description.sponsorship | This work was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) through the MAT2013-46467-C4-R project (including FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wichtig | es_ES |
dc.relation.ispartof | International Journal of Artificial Organs | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biomaterials | es_ES |
dc.subject | Cartilage engineering | es_ES |
dc.subject | Tissue engineering | es_ES |
dc.subject | Polycaprolactone | es_ES |
dc.subject | Subchondral bone alterations | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.5301/ijao.5000457 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-4-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2013-46467-C4-1-R/ES/ESTIMULACION MECANICA LOCAL DE CELULAS MESENQUIMALES DE CARA A SU DIFERENCIACION OSTEOGENICA Y CONDROGENICA EN MEDICINA REGENERATIVA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Vikingsson, LKA.; Sancho-Tello Valls, M.; Ruiz Sauri, A.; Martínez Díaz, S.; Gómez-Tejedor, JA.; Gallego-Ferrer, G.; Carda, C.... (2015). Implantation of a polycaprolactone scaffold with subchondral bone anchoring ameliorates nodules formation and other tissue alterations. International Journal of Artificial Organs. 38(12):659-666. https://doi.org/10.5301/ijao.5000457 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.5301/ijao.5000457 | es_ES |
dc.description.upvformatpinicio | 659 | es_ES |
dc.description.upvformatpfin | 666 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 38 | es_ES |
dc.description.issue | 12 | es_ES |
dc.relation.senia | 306045 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina | es_ES |
dc.description.references | Steadman, J. R., Rodkey, W. G., & Rodrigo, J. J. (2001). Microfracture: Surgical Technique and Rehabilitation to Treat Chondral Defects. Clinical Orthopaedics and Related Research, 391, S362-S369. doi:10.1097/00003086-200110001-00033 | es_ES |
dc.description.references | Steadman, J. R., Briggs, K. K., Rodrigo, J. J., Kocher, M. S., Gill, T. J., & Rodkey, W. G. (2003). Outcomes of microfracture for traumatic chondral defects of the knee: Average 11-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(5), 477-484. doi:10.1053/jars.2003.50112 | es_ES |
dc.description.references | Kon, E., Filardo, G., Berruto, M., Benazzo, F., Zanon, G., Della Villa, S., & Marcacci, M. (2011). Articular Cartilage Treatment in High-Level Male Soccer Players. The American Journal of Sports Medicine, 39(12), 2549-2557. doi:10.1177/0363546511420688 | es_ES |
dc.description.references | Basad, E., Ishaque, B., Bachmann, G., Stürz, H., & Steinmeyer, J. (2010). Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 519-527. doi:10.1007/s00167-009-1028-1 | es_ES |
dc.description.references | Quarch, V. M. A., Enderle, E., Lotz, J., & Frosch, K.-H. (2014). Fate of large donor site defects in osteochondral transfer procedures in the knee joint with and without TruFit Plugs. Archives of Orthopaedic and Trauma Surgery, 134(5), 657-666. doi:10.1007/s00402-014-1930-y | es_ES |
dc.description.references | Duda, G. N., Maldonado, Z. M., Klein, P., Heller, M. O. W., Burns, J., & Bail, H. (2005). On the influence of mechanical conditions in osteochondral defect healing. Journal of Biomechanics, 38(4), 843-851. doi:10.1016/j.jbiomech.2004.04.034 | es_ES |
dc.description.references | Langer, R., & Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926. doi:10.1126/science.8493529 | es_ES |
dc.description.references | Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124. doi:10.1163/156856201744489 | es_ES |
dc.description.references | Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529-2543. doi:10.1016/s0142-9612(00)00121-6 | es_ES |
dc.description.references | Chiquet, M., Renedo, A. S., Huber, F., & Flück, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73-80. doi:10.1016/s0945-053x(03)00004-0 | es_ES |
dc.description.references | Bryant, S. J., Chowdhury, T. T., Lee, D. A., Bader, D. L., & Anseth, K. S. (2004). Crosslinking Density Influences Chondrocyte Metabolism in Dynamically Loaded Photocrosslinked Poly(ethylene glycol) Hydrogels. Annals of Biomedical Engineering, 32(3), 407-417. doi:10.1023/b:abme.0000017535.00602.ca | es_ES |
dc.description.references | Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017 | es_ES |
dc.description.references | Lebourg, M., Antón, J. S., & Ribelles, J. L. G. (2008). Porous membranes of PLLA–PCL blend for tissue engineering applications. European Polymer Journal, 44(7), 2207-2218. doi:10.1016/j.eurpolymj.2008.04.033 | es_ES |
dc.description.references | Hollister, S. J. (2005). Porous scaffold design for tissue engineering. Nature Materials, 4(7), 518-524. doi:10.1038/nmat1421 | es_ES |
dc.description.references | Buschmann, M. D., Kim, Y.-J., Wong, M., Frank, E., Hunziker, E. B., & Grodzinsky, A. J. (1999). Stimulation of Aggrecan Synthesis in Cartilage Explants by Cyclic Loading Is Localized to Regions of High Interstitial Fluid Flow1. Archives of Biochemistry and Biophysics, 366(1), 1-7. doi:10.1006/abbi.1999.1197 | es_ES |
dc.description.references | Gelber, P. E., Batista, J., Millan-Billi, A., Patthauer, L., Vera, S., Gomez-Masdeu, M., & Monllau, J. C. (2014). Magnetic resonance evaluation of TruFit® plugs for the treatment of osteochondral lesions of the knee shows the poor characteristics of the repair tissue. The Knee, 21(4), 827-832. doi:10.1016/j.knee.2014.04.013 | es_ES |
dc.description.references | Gomoll, A. H., Madry, H., Knutsen, G., van Dijk, N., Seil, R., Brittberg, M., & Kon, E. (2010). The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 434-447. doi:10.1007/s00167-010-1072-x | es_ES |
dc.description.references | Kon, E., Filardo, G., Perdisa, F., Venieri, G., & Marcacci, M. (2014). Clinical results of multilayered biomaterials for osteochondral regeneration. Journal of Experimental Orthopaedics, 1(1). doi:10.1186/s40634-014-0010-0 | es_ES |
dc.description.references | Orth, P., Cucchiarini, M., Kohn, D., & Madry, H. (2013). Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence. European Cells and Materials, 25, 299-316. doi:10.22203/ecm.v025a21 | es_ES |
dc.description.references | Kreuz, P. C., Steinwachs, M. R., Erggelet, C., Krause, S. J., Konrad, G., Uhl, M., & Südkamp, N. (2006). Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis and Cartilage, 14(11), 1119-1125. doi:10.1016/j.joca.2006.05.003 | es_ES |
dc.description.references | Vikingsson, L., Claessens, B., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering. Journal of the Mechanical Behavior of Biomedical Materials, 48, 60-69. doi:10.1016/j.jmbbm.2015.03.021 | es_ES |
dc.description.references | Vikingsson, L., Gómez-Tejedor, J. A., Gallego Ferrer, G., & Gómez Ribelles, J. L. (2015). An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. Journal of Biomechanics, 48(7), 1310-1317. doi:10.1016/j.jbiomech.2015.02.013 | es_ES |
dc.description.references | Vikingsson, L., Gallego Ferrer, G., Gómez-Tejedor, J. A., & Gómez Ribelles, J. L. (2014). An «in vitro» experimental model to predict the mechanical behavior of macroporous scaffolds implanted in articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 32, 125-131. doi:10.1016/j.jmbbm.2013.12.024 | es_ES |
dc.description.references | Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448 | es_ES |
dc.description.references | Mow, V. C., Holmes, M. H., & Michael Lai, W. (1984). Fluid transport and mechanical properties of articular cartilage: A review. Journal of Biomechanics, 17(5), 377-394. doi:10.1016/0021-9290(84)90031-9 | es_ES |
dc.description.references | Granero-Moltó, F., Ripalda-Cemborain, P., Izal-Azcarate, I., Crespo-Cullell, I., Duart-Vicente, J., Deplaine, H., … Mora-Gasque, G. (2013). Improved regeneration of articular cartilage by human mesenchymal stem cells through osteoclasts and BMP2 signaling. Osteoarthritis and Cartilage, 21, S116. doi:10.1016/j.joca.2013.02.246 | es_ES |
dc.description.references | Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404 | es_ES |