- -

Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions

Mostrar el registro completo del ítem

Fares Riaño, MA.; Ruíz González, MJ.; Labrador, JP. (2011). Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions. IUBMB Life. 63(4):264-271. https://doi.org/10.1002/iub.455

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/75049

Ficheros en el ítem

Metadatos del ítem

Título: Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions
Autor: Fares Riaño, Mario Ali Ruíz González, Mario Javier Labrador, Juan Pablo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Proteins rarely function in isolation but they form part of complex networks of interactions with other proteins within or among cells. The importance of a particular protein for cell viability is directly dependent ...[+]
Palabras clave: Protein interaction , Coevolution , Yeast 2 hybrid , Coadaptation
Derechos de uso: Cerrado
Fuente:
IUBMB Life. (issn: 1521-6543 )
DOI: 10.1002/iub.455
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/iub.455
Código del Proyecto:
info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/07%2FIN.1%2FB913/IE/Transcriptional Programming of Motor Axon Guidance/
info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/
info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/08%2FRFP%2FNSC1617/IE/Programming Motor Guidance/
info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10%2FRFP%2FGEN2685/IE/Understanding the Role of Heat-Shock Proteins in Evolutionary Innovation/
Agradecimientos:
This work was supported by the Science foundation Ireland, under the Research Frontiers Program (RFP: 10/RFP/GEN2685) and a grant from Ministerio de Ciencia e Innovacion (BFU2009-12022) to M.A.F. J.P.L. is supported by the ...[+]
Tipo: Artículo

References

Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019

Goh, C.-S., Milburn, D., & Gerstein, M. (2004). Conformational changes associated with protein–protein interactions. Current Opinion in Structural Biology, 14(1), 104-109. doi:10.1016/j.sbi.2004.01.005

Edwards, A. M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., & Gerstein, M. (2002). Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics, 18(10), 529-536. doi:10.1016/s0168-9525(02)02763-4 [+]
Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019

Goh, C.-S., Milburn, D., & Gerstein, M. (2004). Conformational changes associated with protein–protein interactions. Current Opinion in Structural Biology, 14(1), 104-109. doi:10.1016/j.sbi.2004.01.005

Edwards, A. M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., & Gerstein, M. (2002). Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics, 18(10), 529-536. doi:10.1016/s0168-9525(02)02763-4

Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17(10), 1030-1032. doi:10.1038/13732

Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., … Séraphin, B. (2001). The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods, 24(3), 218-229. doi:10.1006/meth.2001.1183

Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., … Rothberg, J. M. (2000). A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623-627. doi:10.1038/35001009

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574. doi:10.1073/pnas.061034498

Zhu, H. (2001). Global Analysis of Protein Activities Using Proteome Chips. Science, 293(5537), 2101-2105. doi:10.1126/science.1062191

Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., … Superti-Furga, G. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631-636. doi:10.1038/nature04532

Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., … Tikuisis, A. P. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637-643. doi:10.1038/nature04670

Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the Human Deubiquitinating Enzyme Interaction Landscape. Cell, 138(2), 389-403. doi:10.1016/j.cell.2009.04.042

Bandyopadhyay, D., Jun Huan, Jinze Liu, Prins, J., Snoeyink, J., Wei Wang, & Tropsha, A. (2010). Functional Neighbors: Inferring Relationships between Nonhomologous Protein Families Using Family-Specific Packing Motifs. IEEE Transactions on Information Technology in Biomedicine, 14(5), 1137-1143. doi:10.1109/titb.2010.2053550

Fraser, H. B. (2002). Evolutionary Rate in the Protein Interaction Network. Science, 296(5568), 750-752. doi:10.1126/science.1068696

Hahn, M. W., & Kern, A. D. (2004). Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and Evolution, 22(4), 803-806. doi:10.1093/molbev/msi072

Bloom, J. D., & Adami, C. (2003). BMC Evolutionary Biology, 3(1), 21. doi:10.1186/1471-2148-3-21

Pál, C., Papp, B., & Hurst, L. D. (2003). Rate of evolution and gene dispensability. Nature, 421(6922), 496-497. doi:10.1038/421496b

Hahn, M. W., Conant, G. C., & Wagner, A. (2004). Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? Journal of Molecular Evolution, 58(2), 203-211. doi:10.1007/s00239-003-2544-0

Duret, L., & Mouchiroud, D. (2000). Determinants of Substitution Rates in Mammalian Genes: Expression Pattern Affects Selection Intensity but Not Mutation Rate. Molecular Biology and Evolution, 17(1), 68-070. doi:10.1093/oxfordjournals.molbev.a026239

Pál, C., Papp, B., & Hurst, L. D. (2001). Does the Recombination Rate Affect the Efficiency of Purifying Selection? The Yeast Genome Provides a Partial Answer. Molecular Biology and Evolution, 18(12), 2323-2326. doi:10.1093/oxfordjournals.molbev.a003779

Rocha, E. P. C., & Danchin, A. (2004). An Analysis of Determinants of Amino Acids Substitution Rates in Bacterial Proteins. Molecular Biology and Evolution, 21(1), 108-116. doi:10.1093/molbev/msh004

Ingvarsson, P. K. (2006). Gene Expression and Protein Length Influence Codon Usage and Rates of Sequence Evolution in Populus tremula. Molecular Biology and Evolution, 24(3), 836-844. doi:10.1093/molbev/msl212

Whitfield, L. S., Lovell-Badge, R., & Goodfellow, P. N. (1993). Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 364(6439), 713-715. doi:10.1038/364713a0

Rausher, M. D., Miller, R. E., & Tiffin, P. (1999). Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Molecular Biology and Evolution, 16(2), 266-274. doi:10.1093/oxfordjournals.molbev.a026108

Alvarez-Ponce, D., Aguade, M., & Rozas, J. (2008). Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome Research, 19(2), 234-242. doi:10.1101/gr.084038.108

Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and Plants: A Study in Coevolution. Evolution, 18(4), 586. doi:10.2307/2406212

Thompson, J. N. (1994). The Coevolutionary Process. doi:10.7208/chicago/9780226797670.001.0001

Atchley, W. R., Wollenberg, K. R., Fitch, W. M., Terhalle, W., & Dress, A. W. (2000). Correlations Among Amino Acid Sites in bHLH Protein Domains: An Information Theoretic Analysis. Molecular Biology and Evolution, 17(1), 164-178. doi:10.1093/oxfordjournals.molbev.a026229

Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual Information in Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions†. Biochemistry, 44(19), 7156-7165. doi:10.1021/bi050293e

Fares, M. (2006). Computational and Statistical Methods to Explore the Various Dimensions of Protein Evolution. Current Bioinformatics, 1(2), 207-217. doi:10.2174/157489306777011950

Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144

Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072

Pollock, D. D., Taylor, W. R., & Goldman, N. (1999). Coevolving protein residues: maximum likelihood identification and relationship to structure 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 287(1), 187-198. doi:10.1006/jmbi.1998.2601

Shim Choi, S., Li, W., & Lahn, B. T. (2005). Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis. Nature Genetics, 37(12), 1367-1371. doi:10.1038/ng1685

Pazos, F., & Valencia, A. (2008). Protein co-evolution, co-adaptation and interactions. The EMBO Journal, 27(20), 2648-2655. doi:10.1038/emboj.2008.189

Juan, D., Pazos, F., & Valencia, A. (2008). Co-evolution and co-adaptation in protein networks. FEBS Letters, 582(8), 1225-1230. doi:10.1016/j.febslet.2008.02.017

Tillier, E. R. M., & Charlebois, R. L. (2009). The human protein coevolution network. Genome Research, 19(10), 1861-1871. doi:10.1101/gr.092452.109

Brose, K., Bland, K. S., Wang, K. H., Arnott, D., Henzel, W., Goodman, C. S., … Kidd, T. (1999). Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance. Cell, 96(6), 795-806. doi:10.1016/s0092-8674(00)80590-5

Kidd, T., Bland, K. S., & Goodman, C. S. (1999). Slit Is the Midline Repellent for the Robo Receptor in Drosophila. Cell, 96(6), 785-794. doi:10.1016/s0092-8674(00)80589-9

Drescher, U. (2002). Eph family functions from an evolutionary perspective. Current Opinion in Genetics & Development, 12(4), 397-402. doi:10.1016/s0959-437x(02)00316-7

Mellott, D. O., & Burke, R. D. (2008). The molecular phylogeny of eph receptors and ephrin ligands. BMC Cell Biology, 9(1). doi:10.1186/1471-2121-9-27

Zlotnik, A., Yoshie, O., & Nomiyama, H. (2006). Genome Biology, 7(12), 243. doi:10.1186/gb-2006-7-12-243

Labrador, J. P., Brambilla, R., & Klein, R. (1997). The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. The EMBO Journal, 16(13), 3889-3897. doi:10.1093/emboj/16.13.3889

Himanen, J.-P., & Nikolov, D. B. (2003). Eph signaling: a structural view. Trends in Neurosciences, 26(1), 46-51. doi:10.1016/s0166-2236(02)00005-x

Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846

Dolan, J., Walshe, K., Alsbury, S., Hokamp, K., O’Keeffe, S., Okafuji, T., … Mitchell, K. J. (2007). The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics, 8(1), 320. doi:10.1186/1471-2164-8-320

Kurusu, M., Cording, A., Taniguchi, M., Menon, K., Suzuki, E., & Zinn, K. (2008). A Screen of Cell-Surface Molecules Identifies Leucine-Rich Repeat Proteins as Key Mediators of Synaptic Target Selection. Neuron, 59(6), 972-985. doi:10.1016/j.neuron.2008.07.037

Hong, W., Zhu, H., Potter, C. J., Barsh, G., Kurusu, M., Zinn, K., & Luo, L. (2009). Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nature Neuroscience, 12(12), 1542-1550. doi:10.1038/nn.2442

Dale, C., & Moran, N. A. (2006). Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell, 126(3), 453-465. doi:10.1016/j.cell.2006.07.014

Dale, C. (2001). From the Cover: The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proceedings of the National Academy of Sciences, 98(4), 1883-1888. doi:10.1073/pnas.021450998

Medina, M., & Sachs, J. L. (2010). Symbiont genomics, our new tangled bank. Genomics, 95(3), 129-137. doi:10.1016/j.ygeno.2009.12.004

Sexton, J. A., & Vogel, J. P. (2002). Type IVB Secretion by Intracellular Pathogens. Traffic, 3(3), 178-185. doi:10.1034/j.1600-0854.2002.030303.x

Büttner, D., & He, S. Y. (2009). Type III Protein Secretion in Plant Pathogenic Bacteria. Plant Physiology, 150(4), 1656-1664. doi:10.1104/pp.109.139089

Marchetti, M., Capela, D., Glew, M., Cruveiller, S., Chane-Woon-Ming, B., Gris, C., … Masson-Boivin, C. (2010). Experimental Evolution of a Plant Pathogen into a Legume Symbiont. PLoS Biology, 8(1), e1000280. doi:10.1371/journal.pbio.1000280

Radutoiu, S., Madsen, L. H., Madsen, E. B., Felle, H. H., Umehara, Y., Grønlund, M., … Stougaard, J. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 425(6958), 585-592. doi:10.1038/nature02039

Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10), 763-775. doi:10.1038/nrmicro1987

Williamson, V. M., & Gleason, C. A. (2003). Plant–nematode interactions. Current Opinion in Plant Biology, 6(4), 327-333. doi:10.1016/s1369-5266(03)00059-1

Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem