- -

Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.contributor.author Ruíz González, Mario Javier es_ES
dc.contributor.author Labrador, Juan Pablo es_ES
dc.date.accessioned 2016-12-09T11:00:57Z
dc.date.available 2016-12-09T11:00:57Z
dc.date.issued 2011-04
dc.identifier.issn 1521-6543
dc.identifier.uri http://hdl.handle.net/10251/75049
dc.description.abstract [EN] Proteins rarely function in isolation but they form part of complex networks of interactions with other proteins within or among cells. The importance of a particular protein for cell viability is directly dependent upon the number of interactions where it participates and the function it performs: the larger the number of interactions of a protein the greater its functional importance is for the cell. With the advent of genome sequencing and "omics'' technologies it became feasible conducting large-scale searches for protein interacting partners. Unfortunately, the accuracy of such analyses has been under-whelming owing to methodological limitations and to the inherent complexity of protein interactions. In addition to these experimental approaches, many computational methods have been developed to identify protein-protein interactions by assuming that interacting proteins coevolve resulting from the coadaptation dynamics between the amino acids of their interacting faces. We review the main technological advances made in the field of interactomics and discuss the feasibility of computational methods to identify protein-protein interactions based on the estimation of coevolution. As proof-of-concept, we present a classical case study: the interactions of cell surface proteins (receptors) and their ligands. Finally, we take this discussion one step forward to include interactions between organisms and species to understand the generation of biological complexity. Development of technologies for accurate detection of protein-protein interactions may shed light on processes that go from the fine-tuning of pathways and metabolic networks to the emergence of biological complexity. (C) 2011 IUBMB IUBMB Life, 63( 4): 264-271, 2011 es_ES
dc.description.sponsorship This work was supported by the Science foundation Ireland, under the Research Frontiers Program (RFP: 10/RFP/GEN2685) and a grant from Ministerio de Ciencia e Innovacion (BFU2009-12022) to M.A.F. J.P.L. is supported by the Principal Investigator Grant (07/IN.1/B913) and the Research Frontiers Program (08/RFP/NSC1617) from Science Foundation Ireland. The authors thank Prof. Herman Aberle, Dermot Harnett, and Ash Watson for their careful and critical reading of the manuscript.
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof IUBMB Life es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Protein interaction es_ES
dc.subject Coevolution es_ES
dc.subject Yeast 2 hybrid es_ES
dc.subject Coadaptation es_ES
dc.title Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/iub.455
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/07%2FIN.1%2FB913/IE/Transcriptional Programming of Motor Axon Guidance/
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2009-12022/ES/Impacto De La Duplicacion Genomica En La Innovacion Y Geometria Funcional De Arabidopsis Thaliana/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/08%2FRFP%2FNSC1617/IE/Programming Motor Guidance/
dc.relation.projectID info:eu-repo/grantAgreement/SFI/SFI Research Frontiers Programme (RFP)/10%2FRFP%2FGEN2685/IE/Understanding the Role of Heat-Shock Proteins in Evolutionary Innovation/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Fares Riaño, MA.; Ruíz González, MJ.; Labrador, JP. (2011). Protein Coadaptation and the Design of Novel Approaches to Identify Protein Protein Interactions. IUBMB Life. 63(4):264-271. https://doi.org/10.1002/iub.455 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/iub.455 es_ES
dc.description.upvformatpinicio 264 es_ES
dc.description.upvformatpfin 271 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 63 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 222370 es_ES
dc.identifier.pmid 21488148
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378-382. doi:10.1038/35019019 es_ES
dc.description.references Goh, C.-S., Milburn, D., & Gerstein, M. (2004). Conformational changes associated with protein–protein interactions. Current Opinion in Structural Biology, 14(1), 104-109. doi:10.1016/j.sbi.2004.01.005 es_ES
dc.description.references Edwards, A. M., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., & Gerstein, M. (2002). Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics, 18(10), 529-536. doi:10.1016/s0168-9525(02)02763-4 es_ES
dc.description.references Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., & Séraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 17(10), 1030-1032. doi:10.1038/13732 es_ES
dc.description.references Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., … Séraphin, B. (2001). The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods, 24(3), 218-229. doi:10.1006/meth.2001.1183 es_ES
dc.description.references Uetz, P., Giot, L., Cagney, G., Mansfield, T. A., Judson, R. S., Knight, J. R., … Rothberg, J. M. (2000). A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature, 403(6770), 623-627. doi:10.1038/35001009 es_ES
dc.description.references Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences, 98(8), 4569-4574. doi:10.1073/pnas.061034498 es_ES
dc.description.references Zhu, H. (2001). Global Analysis of Protein Activities Using Proteome Chips. Science, 293(5537), 2101-2105. doi:10.1126/science.1062191 es_ES
dc.description.references Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., … Superti-Furga, G. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631-636. doi:10.1038/nature04532 es_ES
dc.description.references Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., … Tikuisis, A. P. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440(7084), 637-643. doi:10.1038/nature04670 es_ES
dc.description.references Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the Human Deubiquitinating Enzyme Interaction Landscape. Cell, 138(2), 389-403. doi:10.1016/j.cell.2009.04.042 es_ES
dc.description.references Bandyopadhyay, D., Jun Huan, Jinze Liu, Prins, J., Snoeyink, J., Wei Wang, & Tropsha, A. (2010). Functional Neighbors: Inferring Relationships between Nonhomologous Protein Families Using Family-Specific Packing Motifs. IEEE Transactions on Information Technology in Biomedicine, 14(5), 1137-1143. doi:10.1109/titb.2010.2053550 es_ES
dc.description.references Fraser, H. B. (2002). Evolutionary Rate in the Protein Interaction Network. Science, 296(5568), 750-752. doi:10.1126/science.1068696 es_ES
dc.description.references Hahn, M. W., & Kern, A. D. (2004). Comparative Genomics of Centrality and Essentiality in Three Eukaryotic Protein-Interaction Networks. Molecular Biology and Evolution, 22(4), 803-806. doi:10.1093/molbev/msi072 es_ES
dc.description.references Bloom, J. D., & Adami, C. (2003). BMC Evolutionary Biology, 3(1), 21. doi:10.1186/1471-2148-3-21 es_ES
dc.description.references Pál, C., Papp, B., & Hurst, L. D. (2003). Rate of evolution and gene dispensability. Nature, 421(6922), 496-497. doi:10.1038/421496b es_ES
dc.description.references Hahn, M. W., Conant, G. C., & Wagner, A. (2004). Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? Journal of Molecular Evolution, 58(2), 203-211. doi:10.1007/s00239-003-2544-0 es_ES
dc.description.references Duret, L., & Mouchiroud, D. (2000). Determinants of Substitution Rates in Mammalian Genes: Expression Pattern Affects Selection Intensity but Not Mutation Rate. Molecular Biology and Evolution, 17(1), 68-070. doi:10.1093/oxfordjournals.molbev.a026239 es_ES
dc.description.references Pál, C., Papp, B., & Hurst, L. D. (2001). Does the Recombination Rate Affect the Efficiency of Purifying Selection? The Yeast Genome Provides a Partial Answer. Molecular Biology and Evolution, 18(12), 2323-2326. doi:10.1093/oxfordjournals.molbev.a003779 es_ES
dc.description.references Rocha, E. P. C., & Danchin, A. (2004). An Analysis of Determinants of Amino Acids Substitution Rates in Bacterial Proteins. Molecular Biology and Evolution, 21(1), 108-116. doi:10.1093/molbev/msh004 es_ES
dc.description.references Ingvarsson, P. K. (2006). Gene Expression and Protein Length Influence Codon Usage and Rates of Sequence Evolution in Populus tremula. Molecular Biology and Evolution, 24(3), 836-844. doi:10.1093/molbev/msl212 es_ES
dc.description.references Whitfield, L. S., Lovell-Badge, R., & Goodfellow, P. N. (1993). Rapid sequence evolution of the mammalian sex-determining gene SRY. Nature, 364(6439), 713-715. doi:10.1038/364713a0 es_ES
dc.description.references Rausher, M. D., Miller, R. E., & Tiffin, P. (1999). Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Molecular Biology and Evolution, 16(2), 266-274. doi:10.1093/oxfordjournals.molbev.a026108 es_ES
dc.description.references Alvarez-Ponce, D., Aguade, M., & Rozas, J. (2008). Network-level molecular evolutionary analysis of the insulin/TOR signal transduction pathway across 12 Drosophila genomes. Genome Research, 19(2), 234-242. doi:10.1101/gr.084038.108 es_ES
dc.description.references Ehrlich, P. R., & Raven, P. H. (1964). Butterflies and Plants: A Study in Coevolution. Evolution, 18(4), 586. doi:10.2307/2406212 es_ES
dc.description.references Thompson, J. N. (1994). The Coevolutionary Process. doi:10.7208/chicago/9780226797670.001.0001 es_ES
dc.description.references Atchley, W. R., Wollenberg, K. R., Fitch, W. M., Terhalle, W., & Dress, A. W. (2000). Correlations Among Amino Acid Sites in bHLH Protein Domains: An Information Theoretic Analysis. Molecular Biology and Evolution, 17(1), 164-178. doi:10.1093/oxfordjournals.molbev.a026229 es_ES
dc.description.references Gloor, G. B., Martin, L. C., Wahl, L. M., & Dunn, S. D. (2005). Mutual Information in Protein Multiple Sequence Alignments Reveals Two Classes of Coevolving Positions†. Biochemistry, 44(19), 7156-7165. doi:10.1021/bi050293e es_ES
dc.description.references Fares, M. (2006). Computational and Statistical Methods to Explore the Various Dimensions of Protein Evolution. Current Bioinformatics, 1(2), 207-217. doi:10.2174/157489306777011950 es_ES
dc.description.references Lovell, S. C., & Robertson, D. L. (2010). An Integrated View of Molecular Coevolution in Protein-Protein Interactions. Molecular Biology and Evolution, 27(11), 2567-2575. doi:10.1093/molbev/msq144 es_ES
dc.description.references Tillier, E. R. M., & Lui, T. W. H. (2003). Using multiple interdependency to separate functional from phylogenetic correlations in protein alignments. Bioinformatics, 19(6), 750-755. doi:10.1093/bioinformatics/btg072 es_ES
dc.description.references Pollock, D. D., Taylor, W. R., & Goldman, N. (1999). Coevolving protein residues: maximum likelihood identification and relationship to structure 1 1Edited by G. Von Heijne. Journal of Molecular Biology, 287(1), 187-198. doi:10.1006/jmbi.1998.2601 es_ES
dc.description.references Shim Choi, S., Li, W., & Lahn, B. T. (2005). Robust signals of coevolution of interacting residues in mammalian proteomes identified by phylogeny-aided structural analysis. Nature Genetics, 37(12), 1367-1371. doi:10.1038/ng1685 es_ES
dc.description.references Pazos, F., & Valencia, A. (2008). Protein co-evolution, co-adaptation and interactions. The EMBO Journal, 27(20), 2648-2655. doi:10.1038/emboj.2008.189 es_ES
dc.description.references Juan, D., Pazos, F., & Valencia, A. (2008). Co-evolution and co-adaptation in protein networks. FEBS Letters, 582(8), 1225-1230. doi:10.1016/j.febslet.2008.02.017 es_ES
dc.description.references Tillier, E. R. M., & Charlebois, R. L. (2009). The human protein coevolution network. Genome Research, 19(10), 1861-1871. doi:10.1101/gr.092452.109 es_ES
dc.description.references Brose, K., Bland, K. S., Wang, K. H., Arnott, D., Henzel, W., Goodman, C. S., … Kidd, T. (1999). Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance. Cell, 96(6), 795-806. doi:10.1016/s0092-8674(00)80590-5 es_ES
dc.description.references Kidd, T., Bland, K. S., & Goodman, C. S. (1999). Slit Is the Midline Repellent for the Robo Receptor in Drosophila. Cell, 96(6), 785-794. doi:10.1016/s0092-8674(00)80589-9 es_ES
dc.description.references Drescher, U. (2002). Eph family functions from an evolutionary perspective. Current Opinion in Genetics & Development, 12(4), 397-402. doi:10.1016/s0959-437x(02)00316-7 es_ES
dc.description.references Mellott, D. O., & Burke, R. D. (2008). The molecular phylogeny of eph receptors and ephrin ligands. BMC Cell Biology, 9(1). doi:10.1186/1471-2121-9-27 es_ES
dc.description.references Zlotnik, A., Yoshie, O., & Nomiyama, H. (2006). Genome Biology, 7(12), 243. doi:10.1186/gb-2006-7-12-243 es_ES
dc.description.references Labrador, J. P., Brambilla, R., & Klein, R. (1997). The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. The EMBO Journal, 16(13), 3889-3897. doi:10.1093/emboj/16.13.3889 es_ES
dc.description.references Himanen, J.-P., & Nikolov, D. B. (2003). Eph signaling: a structural view. Trends in Neurosciences, 26(1), 46-51. doi:10.1016/s0166-2236(02)00005-x es_ES
dc.description.references Davis, B. H., Poon, A. F. Y., & Whitlock, M. C. (2009). Compensatory mutations are repeatable and clustered within proteins. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1823-1827. doi:10.1098/rspb.2008.1846 es_ES
dc.description.references Dolan, J., Walshe, K., Alsbury, S., Hokamp, K., O’Keeffe, S., Okafuji, T., … Mitchell, K. J. (2007). The extracellular Leucine-Rich Repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics, 8(1), 320. doi:10.1186/1471-2164-8-320 es_ES
dc.description.references Kurusu, M., Cording, A., Taniguchi, M., Menon, K., Suzuki, E., & Zinn, K. (2008). A Screen of Cell-Surface Molecules Identifies Leucine-Rich Repeat Proteins as Key Mediators of Synaptic Target Selection. Neuron, 59(6), 972-985. doi:10.1016/j.neuron.2008.07.037 es_ES
dc.description.references Hong, W., Zhu, H., Potter, C. J., Barsh, G., Kurusu, M., Zinn, K., & Luo, L. (2009). Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nature Neuroscience, 12(12), 1542-1550. doi:10.1038/nn.2442 es_ES
dc.description.references Dale, C., & Moran, N. A. (2006). Molecular Interactions between Bacterial Symbionts and Their Hosts. Cell, 126(3), 453-465. doi:10.1016/j.cell.2006.07.014 es_ES
dc.description.references Dale, C. (2001). From the Cover: The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proceedings of the National Academy of Sciences, 98(4), 1883-1888. doi:10.1073/pnas.021450998 es_ES
dc.description.references Medina, M., & Sachs, J. L. (2010). Symbiont genomics, our new tangled bank. Genomics, 95(3), 129-137. doi:10.1016/j.ygeno.2009.12.004 es_ES
dc.description.references Sexton, J. A., & Vogel, J. P. (2002). Type IVB Secretion by Intracellular Pathogens. Traffic, 3(3), 178-185. doi:10.1034/j.1600-0854.2002.030303.x es_ES
dc.description.references Büttner, D., & He, S. Y. (2009). Type III Protein Secretion in Plant Pathogenic Bacteria. Plant Physiology, 150(4), 1656-1664. doi:10.1104/pp.109.139089 es_ES
dc.description.references Marchetti, M., Capela, D., Glew, M., Cruveiller, S., Chane-Woon-Ming, B., Gris, C., … Masson-Boivin, C. (2010). Experimental Evolution of a Plant Pathogen into a Legume Symbiont. PLoS Biology, 8(1), e1000280. doi:10.1371/journal.pbio.1000280 es_ES
dc.description.references Radutoiu, S., Madsen, L. H., Madsen, E. B., Felle, H. H., Umehara, Y., Grønlund, M., … Stougaard, J. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 425(6958), 585-592. doi:10.1038/nature02039 es_ES
dc.description.references Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10), 763-775. doi:10.1038/nrmicro1987 es_ES
dc.description.references Williamson, V. M., & Gleason, C. A. (2003). Plant–nematode interactions. Current Opinion in Plant Biology, 6(4), 327-333. doi:10.1016/s1369-5266(03)00059-1 es_ES
dc.description.references Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem