- -

Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter

Mostrar el registro completo del ítem

Vila, C.; Amr, FI.; Blay, G.; Muñoz Roca, MDC.; Pedro, JR. (2016). Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter. Chemistry - An Asian Journal. 11(10):1532-1536. https://doi.org/10.1002/asia.201600325

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/75067

Ficheros en el ítem

Metadatos del ítem

Título: Organocatalytic Enantioselective Synthesis of Pyrazoles Bearing a Quaternary Stereocenter
Autor: Vila, Carlos Amr, Fares Ibrahim Blay, Gonzalo Muñoz Roca, María del Carmen Pedro, José R.
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
An efficient one-pot asymmetric synthesis of pyrazoles bearing a chiral quaternary stereocenter has been developed. Quinine-derived thiourea catalyzed the enantioselective addition of pyrazolones to isatin-derived ketimines, ...[+]
Palabras clave: Asymmetric catalysis , Isatin-derived ketimines , Organocatalysis , Pyrazoles , Quaternary stereocenters
Derechos de uso: Cerrado
Fuente:
Chemistry - An Asian Journal. (issn: 1861-4728 ) (eissn: 1861-471X )
DOI: 10.1002/asia.201600325
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/asia.201600325
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2013-47494-P/ES/NUEVOS RETOS EN EL DESARROLLO DE PROCESOS ENANTIOSELECTIVOS DE FORMACION DE ENLACES C-C MEDIANTE CATALISIS DUAL COOPERATIVA./
info:eu-repo/grantAgreement/GVA//ISIC2012%2F 001/
Agradecimientos:
Financial support from the MINECO (Gobierno de Espana; CTQ2013-47494-P) and from Generalitat Valenciana (ISIC2012/001) is gratefully acknowledged. C.V. thanks MINECO for a JdC contract. Access to NMR, MS and X-ray facilities ...[+]
Tipo: Artículo

References

Schmidt, A., & Dreger, A. (2011). Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Current Organic Chemistry, 15(9), 1423-1463. doi:10.2174/138527211795378263

Fustero, S., Sánchez-Roselló, M., Barrio, P., & Simón-Fuentes, A. (2011). From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. Chemical Reviews, 111(11), 6984-7034. doi:10.1021/cr2000459

Kumar, V., Kaur, K., Gupta, G. K., & Sharma, A. K. (2013). Pyrazole containing natural products: Synthetic preview and biological significance. European Journal of Medicinal Chemistry, 69, 735-753. doi:10.1016/j.ejmech.2013.08.053 [+]
Schmidt, A., & Dreger, A. (2011). Recent Advances in the Chemistry of Pyrazoles. Properties, Biological Activities, and Syntheses. Current Organic Chemistry, 15(9), 1423-1463. doi:10.2174/138527211795378263

Fustero, S., Sánchez-Roselló, M., Barrio, P., & Simón-Fuentes, A. (2011). From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles. Chemical Reviews, 111(11), 6984-7034. doi:10.1021/cr2000459

Kumar, V., Kaur, K., Gupta, G. K., & Sharma, A. K. (2013). Pyrazole containing natural products: Synthetic preview and biological significance. European Journal of Medicinal Chemistry, 69, 735-753. doi:10.1016/j.ejmech.2013.08.053

Fujimori, Y., Katsuno, K., Nakashima, I., Ishikawa-Takemura, Y., Fujikura, H., & Isaji, M. (2008). Remogliflozin Etabonate, in a Novel Category of Selective Low-Affinity Sodium Glucose Cotransporter (SGLT2) Inhibitors, Exhibits Antidiabetic Efficacy in Rodent Models. Journal of Pharmacology and Experimental Therapeutics, 327(1), 268-276. doi:10.1124/jpet.108.140210

Hu, X., Gao, B., Chu, Y., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Enantioselective Synthesis of β-Pyrazole-Substituted Alcohols through an Asymmetric Ring-Opening Reaction of meso-Epoxides. Chemistry - A European Journal, 18(12), 3473-3477. doi:10.1002/chem.201103792

Pérez-Aguilar, M. C., & Valdés, C. (2015). Synthesis of Chiral Pyrazoles: A 1,3-Dipolar Cycloaddition/[1,5] Sigmatropic Rearrangement with Stereoretentive Migration of a Stereogenic Group. Angewandte Chemie International Edition, 54(46), 13729-13733. doi:10.1002/anie.201506881

Pérez-Aguilar, M. C., & Valdés, C. (2015). Synthesis of Chiral Pyrazoles: A 1,3-Dipolar Cycloaddition/[1,5] Sigmatropic Rearrangement with Stereoretentive Migration of a Stereogenic Group. Angewandte Chemie, 127(46), 13933-13937. doi:10.1002/ange.201506881

Lee, S.-J., Bae, J.-Y., & Cho, C.-W. (2015). Phase-Transfer-Catalyzed Asymmetric Synthesis of ChiralN-Substituted Pyr­azoles by Aza-Michael Reaction. European Journal of Organic Chemistry, 2015(29), 6495-6502. doi:10.1002/ejoc.201500940

Lin, Q., Meloni, D., Pan, Y., Xia, M., Rodgers, J., Shepard, S., … Zhou, J. (2009). Enantioselective Synthesis of Janus Kinase Inhibitor INCB018424 via an Organocatalytic Aza-Michael Reaction. Organic Letters, 11(9), 1999-2002. doi:10.1021/ol900350k

Park, C. M., & Jeon, D. J. (2012). Stereoselective synthesis of novel pyrazole derivatives using tert-butansulfonamide as a chiral auxiliary. Organic & Biomolecular Chemistry, 10(13), 2613. doi:10.1039/c2ob06495b

Blay, G., Fernández, I., Molina, E., Muñoz, M. C., Pedro, J. R., & Vila, C. (2006). Diastereoselective Michael addition of (S)-mandelic acid enolate to 2-arylidene-1,3-diketones: enantioselective diversity-oriented synthesis of densely substituted pyrazoles. Tetrahedron, 62(34), 8069-8076. doi:10.1016/j.tet.2006.06.009

Haydl, A. M., Xu, K., & Breit, B. (2015). Regio- and Enantioselective Synthesis of N-Substituted Pyrazoles by Rhodium-Catalyzed Asymmetric Addition to Allenes. Angewandte Chemie International Edition, 54(24), 7149-7153. doi:10.1002/anie.201501758

Haydl, A. M., Xu, K., & Breit, B. (2015). Regio- and Enantioselective Synthesis of N-Substituted Pyrazoles by Rhodium-Catalyzed Asymmetric Addition to Allenes. Angewandte Chemie, 127(24), 7255-7259. doi:10.1002/ange.201501758

Zhang, J., Zhang, Y., Liu, X., Guo, J., Cao, W., Lin, L., & Feng, X. (2014). Enantioselective Protonation by Aza-Michael Reaction between Pyrazoles and α-Substituted Vinyl Ketones. Advanced Synthesis & Catalysis, 356(17), 3545-3550. doi:10.1002/adsc.201400616

Geng, Z.-C., Zhang, J.-X., Li, N., Chen, J., Huang, X.-F., Zhang, S.-Y., … Wang, X.-W. (2014). Construction of highly substituted pyrazole derivatives with P–C bond: access to racemic and enantioselective forms by conjugate addition of diarylphosphane oxides to α,β-unsaturated pyrazolones. Tetrahedron, 70(2), 417-426. doi:10.1016/j.tet.2013.11.038

Chauhan, P., Mahajan, S., & Enders, D. (2015). Asymmetric synthesis of pyrazoles and pyrazolones employing the reactivity of pyrazolin-5-one derivatives. Chemical Communications, 51(65), 12890-12907. doi:10.1039/c5cc04930j

Liao, Y.-H., Chen, W.-B., Wu, Z.-J., Du, X.-L., Cun, L.-F., Zhang, X.-M., & Yuan, W.-C. (2010). Organocatalytic Asymmetric Michael Addition of Pyrazolin-5-ones to Nitroolefins with Bifunctional Thiourea: Stereocontrolled Construction of Contiguous Quaternary and Tertiary Stereocenters. Advanced Synthesis & Catalysis, 352(5), 827-832. doi:10.1002/adsc.200900764

Wang, Z., Yang, Z., Chen, D., Liu, X., Lin, L., & Feng, X. (2011). Highly Enantioselective Michael Addition of Pyrazolin-5-ones Catalyzed by Chiral Metal/N,N′-Dioxide Complexes: Metal-Directed Switch in Enantioselectivity. Angewandte Chemie International Edition, 50(21), 4928-4932. doi:10.1002/anie.201008256

Wang, Z., Yang, Z., Chen, D., Liu, X., Lin, L., & Feng, X. (2011). Highly Enantioselective Michael Addition of Pyrazolin-5-ones Catalyzed by Chiral Metal/N,N′-Dioxide Complexes: Metal-Directed Switch in Enantioselectivity. Angewandte Chemie, 123(21), 5030-5034. doi:10.1002/ange.201008256

Yang, Z., Wang, Z., Bai, S., Liu, X., Lin, L., & Feng, X. (2011). Asymmetric α-Amination of 4-Substituted Pyrazolones Catalyzed by a Chiral Gd(OTf)3/N,N′-Dioxide Complex: Highly Enantioselective Synthesis of 4-Amino-5-pyrazolone Derivatives. Organic Letters, 13(4), 596-599. doi:10.1021/ol102804p

Wang, Z., Chen, Z., Bai, S., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Highly Z-Selective Asymmetric Conjugate Addition of Alkynones with Pyrazol-5-ones Promoted by N,N′-Dioxide-Metal Complexes. Angewandte Chemie International Edition, 51(11), 2776-2779. doi:10.1002/anie.201109130

Wang, Z., Chen, Z., Bai, S., Li, W., Liu, X., Lin, L., & Feng, X. (2012). Highly Z-Selective Asymmetric Conjugate Addition of Alkynones with Pyrazol-5-ones Promoted by N,N′-Dioxide-Metal Complexes. Angewandte Chemie, 124(11), 2830-2833. doi:10.1002/ange.201109130

Tao, Z.-L., Zhang, W.-Q., Chen, D.-F., Adele, A., & Gong, L.-Z. (2013). Pd-Catalyzed Asymmetric Allylic Alkylation of Pyrazol-5-ones with Allylic Alcohols: The Role of the Chiral Phosphoric Acid in C–O Bond Cleavage and Stereocontrol. Journal of the American Chemical Society, 135(25), 9255-9258. doi:10.1021/ja402740q

Hack, D., Dürr, A. B., Deckers, K., Chauhan, P., Seling, N., Rübenach, L., … Enders, D. (2015). Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis. Angewandte Chemie International Edition, 55(5), 1797-1800. doi:10.1002/anie.201510602

Hack, D., Dürr, A. B., Deckers, K., Chauhan, P., Seling, N., Rübenach, L., … Enders, D. (2015). Asymmetric Synthesis of Spiropyrazolones by Sequential Organo- and Silver Catalysis. Angewandte Chemie, 128(5), 1829-1832. doi:10.1002/ange.201510602

Han, X., Yao, W., Wang, T., Tan, Y. R., Yan, Z., Kwiatkowski, J., & Lu, Y. (2014). Asymmetric Synthesis of Spiropyrazolones through Phosphine-Catalyzed [4+1] Annulation. Angewandte Chemie International Edition, 53(22), 5643-5647. doi:10.1002/anie.201311214

Han, X., Yao, W., Wang, T., Tan, Y. R., Yan, Z., Kwiatkowski, J., & Lu, Y. (2014). Asymmetric Synthesis of Spiropyrazolones through Phosphine-Catalyzed [4+1] Annulation. Angewandte Chemie, 126(22), 5749-5753. doi:10.1002/ange.201311214

Li, J.-H., & Du, D.-M. (2015). Enantioselective synthesis of chiral heterocycles containing both chroman and pyrazolone derivatives catalysed by a chiral squaramide. Organic & Biomolecular Chemistry, 13(20), 5636-5645. doi:10.1039/c4ob02653e

Hack, D., Chauhan, P., Deckers, K., Mizutani, Y., Raabe, G., & Enders, D. (2015). Combining silver- and organocatalysis: an enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles. Chemical Communications, 51(12), 2266-2269. doi:10.1039/c4cc09495f

Enders, D., Grossmann, A., Gieraths, B., Düzdemir, M., & Merkens, C. (2012). Organocatalytic One-Pot Asymmetric Synthesis of 4H,5H-Pyrano[2,3-c]pyrazoles. Organic Letters, 14(16), 4254-4257. doi:10.1021/ol301983f

Gogoi, S., & Zhao, C.-G. (2009). Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Letters, 50(19), 2252-2255. doi:10.1016/j.tetlet.2009.02.210

Yetra, S. R., Mondal, S., Suresh, E., & Biju, A. T. (2015). Enantioselective Synthesis of Functionalized Pyrazoles by NHC-Catalyzed Reaction of Pyrazolones with α,β-Unsaturated Aldehydes. Organic Letters, 17(6), 1417-1420. doi:10.1021/acs.orglett.5b00293

Zhang, Y., Wu, S., Wang, S., Fang, K., Dong, G., Liu, N., … Wang, W. (2015). Divergent Cascade Construction of Skeletally Diverse «Privileged» Pyrazole-Derived Molecular Architectures. European Journal of Organic Chemistry, 2015(9), 2030-2037. doi:10.1002/ejoc.201403673

Wang, S., Rodriguez-Escrich, C., & Pericàs, M. A. (2016). H-Bond-Directing Organocatalyst for Enantioselective [4 + 2] Cycloadditions via Dienamine Catalysis. Organic Letters, 18(3), 556-559. doi:10.1021/acs.orglett.5b03575

Kumarswamyreddy, N., & Kesavan, V. (2016). Enantioselective Synthesis of Dihydrospiro[indoline-3,4′-pyrano[2,3-c]pyrazole] Derivatives via Michael/Hemiketalization Reaction. Organic Letters, 18(6), 1354-1357. doi:10.1021/acs.orglett.6b00287

Dalpozzo, R., Bartoli, G., & Bencivenni, G. (2012). Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chemical Society Reviews, 41(21), 7247. doi:10.1039/c2cs35100e

Zhou, F., Liu, Y.-L., & Zhou, J. (2010). Catalytic Asymmetric Synthesis of Oxindoles Bearing a Tetrasubstituted Stereocenter at the C-3 Position. Advanced Synthesis & Catalysis, 352(9), 1381-1407. doi:10.1002/adsc.201000161

Galliford, C. V., & Scheidt, K. A. (2007). Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angewandte Chemie International Edition, 46(46), 8748-8758. doi:10.1002/anie.200701342

Galliford, C. V., & Scheidt, K. A. (2007). Natürliche Pyrrolidinylspirooxindole als Vorlagen für die Entwicklung medizinischer Wirkstoffe. Angewandte Chemie, 119(46), 8902-8912. doi:10.1002/ange.200701342

Marti, C., & Carreira, E. M. (2003). Construction of Spiro[pyrrolidine-3,3′-oxindoles] − Recent Applications to the Synthesis of Oxindole Alkaloids. European Journal of Organic Chemistry, 2003(12), 2209-2219. doi:10.1002/ejoc.200300050

Lin, H., & Danishefsky, S. J. (2003). Gelsemine: A Thought-Provoking Target for Total Synthesis. Angewandte Chemie International Edition, 42(1), 36-51. doi:10.1002/anie.200390048

Lin, H., & Danishefsky, S. J. (2003). Eine chemische Denksportaufgabe: die Totalsynthese von Gelsemin. Angewandte Chemie, 115(1), 38-53. doi:10.1002/ange.200390018

Trost, B., & Brennan, M. (2009). Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products. Synthesis, 2009(18), 3003-3025. doi:10.1055/s-0029-1216975

Xu, X., Zhang, X., Nong, X., Wei, X., & Qi, S. (2015). Oxindole alkaloids from the fungus Penicillium commune DFFSCS026 isolated from deep-sea-derived sediments. Tetrahedron, 71(4), 610-615. doi:10.1016/j.tet.2014.12.031

Sun, M.-X., Gao, H.-H., Zhao, J., Zhang, L., & Xiao, K. (2015). New oxindole alkaloids from Gelsemium elegans. Tetrahedron Letters, 56(45), 6194-6197. doi:10.1016/j.tetlet.2015.09.086

Walker, J., Daisley, R. W., & Beckett, A. H. (1970). Substituted oxindoles. III. Synthesis and pharmacology of some substituted oxindoles. Journal of Medicinal Chemistry, 13(5), 983-985. doi:10.1021/jm00299a048

Zong, L., Du, S., Chin, K. F., Wang, C., & Tan, C.-H. (2015). Enantioselective Synthesis of Quaternary Carbon Stereocenters: Addition of 3-Substituted Oxindoles to Vinyl Sulfone Catalyzed by Pentanidiums. Angewandte Chemie International Edition, 54(32), 9390-9393. doi:10.1002/anie.201503844

Zong, L., Du, S., Chin, K. F., Wang, C., & Tan, C.-H. (2015). Enantioselective Synthesis of Quaternary Carbon Stereocenters: Addition of 3-Substituted Oxindoles to Vinyl Sulfone Catalyzed by Pentanidiums. Angewandte Chemie, 127(32), 9522-9525. doi:10.1002/ange.201503844

Chauhan, P., & Chimni, S. S. (2013). Organocatalytic asymmetric synthesis of 3-amino-2-oxindole derivatives bearing a tetra-substituted stereocenter. Tetrahedron: Asymmetry, 24(7), 343-356. doi:10.1016/j.tetasy.2013.03.002

Kaur, J., Chimni, S. S., Mahajan, S., & Kumar, A. (2015). Stereoselective synthesis of 3-amino-2-oxindoles from isatin imines: new scaffolds for bioactivity evaluation. RSC Advances, 5(65), 52481-52496. doi:10.1039/c5ra06969f

Zhou, J., Yu, J.-S., Zhou, F., & Liu, Y.-L. (2015). A Journey in the Catalytic Synthesis of 3-Substituted 3-Amino­oxindoles. Synlett, 26(18), 2491-2504. doi:10.1055/s-0034-1378873

Zhao, J., Fang, B., Luo, W., Hao, X., Liu, X., Lin, L., & Feng, X. (2014). Enantioselective Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Silyl Ketene Imines with Isatin-Derived Ketimines. Angewandte Chemie International Edition, 54(1), 241-244. doi:10.1002/anie.201408730

Zhao, J., Fang, B., Luo, W., Hao, X., Liu, X., Lin, L., & Feng, X. (2014). Enantioselective Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Silyl Ketene Imines with Isatin-Derived Ketimines. Angewandte Chemie, 127(1), 243-246. doi:10.1002/ange.201408730

Engl, O. D., Fritz, S. P., & Wennemers, H. (2015). Stereoselective Organocatalytic Synthesis of Oxindoles with Adjacent Tetrasubstituted Stereocenters. Angewandte Chemie International Edition, 54(28), 8193-8197. doi:10.1002/anie.201502976

Engl, O. D., Fritz, S. P., & Wennemers, H. (2015). Stereoselective Organocatalytic Synthesis of Oxindoles with Adjacent Tetrasubstituted Stereocenters. Angewandte Chemie, 127(28), 8311-8315. doi:10.1002/ange.201502976

Zhang, H.-M., Gao, Z.-H., & Ye, S. (2014). Bifunctional N-Heterocyclic Carbene-Catalyzed Highly Enantioselective Synthesis of Spirocyclic Oxindolo-β-lactams. Organic Letters, 16(11), 3079-3081. doi:10.1021/ol501205v

Hara, N., Nakamura, S., Sano, M., Tamura, R., Funahashi, Y., & Shibata, N. (2012). Enantioselective Synthesis of AG-041R by using N-Heteroarenesulfonyl Cinchona Alkaloid Amides as Organocatalysts. Chemistry - A European Journal, 18(30), 9276-9280. doi:10.1002/chem.201200367

Liu, Y.-L., & Zhou, J. (2013). Organocatalytic asymmetric cyanation of isatin derived N-Boc ketoimines. Chem. Commun., 49(39), 4421-4423. doi:10.1039/c2cc36665g

Arai, T., Matsumura, E., & Masu, H. (2014). Bis(imidazolidine)pyridine-NiCl2 Catalyst for Nitro-Mannich Reaction of Isatin-Derived N-Boc Ketimines: Asymmetric Synthesis of Chiral 3-Substituted 3-Amino-2-oxindoles. Organic Letters, 16(10), 2768-2771. doi:10.1021/ol501085y

Nakamura, S., Hyodo, K., Nakamura, M., Nakane, D., & Masuda, H. (2013). Catalytic Enantioselective Allylation of Ketimines by Using Palladium Pincer Complexes with Chiral Bis(imidazoline)s. Chemistry - A European Journal, 19(23), 7304-7309. doi:10.1002/chem.201300685

Xu, J., Mou, C., Zhu, T., Song, B.-A., & Chi, Y. R. (2014). N-Heterocyclic Carbene-Catalyzed Chemoselective Cross-Aza-Benzoin Reaction of Enals with Isatin-Derived Ketimines: Access to Chiral Quaternary Aminooxindoles. Organic Letters, 16(12), 3272-3275. doi:10.1021/ol501286e

Feng, J., Yan, W., Wang, D., Li, P., Sun, Q., & Wang, R. (2012). The highly enantioselective addition of indoles and pyrroles to isatins-derived N-Boc ketimines catalyzed by chiral phosphoric acids. Chemical Communications, 48(64), 8003. doi:10.1039/c2cc33200k

Zhao, K., Shu, T., Jia, J., Raabe, G., & Enders, D. (2015). An Organocatalytic Mannich/Denitration Reaction for the Asymmetric Synthesis of 3-Ethylacetate-Substitued 3-Amino-2-Oxindoles: Formal Synthesis of AG-041R. Chemistry - A European Journal, 21(10), 3933-3936. doi:10.1002/chem.201406422

Decaux, G., Soupart, A., & Vassart, G. (2008). Non-peptide arginine-vasopressin antagonists: the vaptans. The Lancet, 371(9624), 1624-1632. doi:10.1016/s0140-6736(08)60695-9

Shimazaki, T., Iijima, M., & Chaki, S. (2006). The pituitary mediates the anxiolytic-like effects of the vasopressin V1B receptor antagonist, SSR149415, in a social interaction test in rats. European Journal of Pharmacology, 543(1-3), 63-67. doi:10.1016/j.ejphar.2006.06.032

Bernard, K., Bogliolo, S., & Ehrenfeld, J. (2005). Vasotocin and vasopressin stimulation of the chloride secretion in the human bronchial epithelial cell line, 16HBE14o-. British Journal of Pharmacology, 144(8), 1037-1050. doi:10.1038/sj.bjp.0706103

Rottmann, M., McNamara, C., Yeung, B. K. S., Lee, M. C. S., Zou, B., Russell, B., … Diagana, T. T. (2010). Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 329(5996), 1175-1180. doi:10.1126/science.1193225

Vandekerckhove, S., & D’hooghe, M. (2015). Quinoline-based antimalarial hybrid compounds. Bioorganic & Medicinal Chemistry, 23(16), 5098-5119. doi:10.1016/j.bmc.2014.12.018

Sandhu, S., Bansal, Y., Silakari, O., & Bansal, G. (2014). Coumarin hybrids as novel therapeutic agents. Bioorganic & Medicinal Chemistry, 22(15), 3806-3814. doi:10.1016/j.bmc.2014.05.032

Claudio Viegas-Junior, Eliezer J. Barreiro, & Carlos Alberto Manssour Fraga. (2007). Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Current Medicinal Chemistry, 14(17), 1829-1852. doi:10.2174/092986707781058805

B. Tsogoeva, S. (2010). Recent Progress in the Development of Synthetic Hybrids of Natural or Unnatural Bioactive Compounds for Medicinal Chemistry. Mini-Reviews in Medicinal Chemistry, 10(9), 773-793. doi:10.2174/138955710791608280

Decker, M. (2011). Hybrid Molecules Incorporating Natural Products: Applications in Cancer Therapy, Neurodegenerative Disorders and Beyond. Current Medicinal Chemistry, 18(10), 1464-1475. doi:10.2174/092986711795328355

Walsh, J., & Bell, A. (2009). Hybrid Drugs for Malaria. Current Pharmaceutical Design, 15(25), 2970-2985. doi:10.2174/138161209789058183

Blay, G., Fernández, I., Muñoz, M. C., Pedro, J. R., Recuenco, A., & Vila, C. (2011). Enantioselective Synthesis of Tertiary Alcohols through a Zirconium-Catalyzed Friedel–Crafts Alkylation of Pyrroles with α-Ketoesters. The Journal of Organic Chemistry, 76(15), 6286-6294. doi:10.1021/jo2010704

Blay, G., Fernández, I., Monleón, A., Pedro, J. R., & Vila, C. (2009). Enantioselective Zirconium-Catalyzed Friedel−Crafts Alkylation of Pyrrole with Trifluoromethyl Ketones. Organic Letters, 11(2), 441-444. doi:10.1021/ol802509m

Holmquist, M., Blay, G., Muñoz, M. C., & Pedro, J. R. (2014). Enantioselective Addition of Nitromethane to 2-Acylpyridine N-Oxides. Expanding the Generation of Quaternary Stereocenters with the Henry Reaction. Organic Letters, 16(4), 1204-1207. doi:10.1021/ol500082d

Holmquist, M., Blay, G., & Pedro, J. R. (2014). Highly enantioselective aza-Henry reaction with isatin N-Boc ketimines. Chem. Commun., 50(66), 9309-9312. doi:10.1039/c4cc04051a

Montesinos-Magraner, M., Vila, C., Cantón, R., Blay, G., Fernández, I., Muñoz, M. C., & Pedro, J. R. (2015). Organocatalytic Asymmetric Addition of Naphthols and Electron-Rich Phenols to Isatin-Derived Ketimines: Highly Enantioselective Construction of Tetrasubstituted Stereocenters. Angewandte Chemie International Edition, 54(21), 6320-6324. doi:10.1002/anie.201501273

Montesinos-Magraner, M., Vila, C., Cantón, R., Blay, G., Fernández, I., Muñoz, M. C., & Pedro, J. R. (2015). Organocatalytic Asymmetric Addition of Naphthols and Electron-Rich Phenols to Isatin-Derived Ketimines: Highly Enantioselective Construction of Tetrasubstituted Stereocenters. Angewandte Chemie, 127(21), 6418-6422. doi:10.1002/ange.201501273

Holmquist, M., Blay, G., Muñoz, M. C., & Pedro, J. R. (2015). Aza-Henry Reaction of Isatin Ketimines with Methyl 4-Nitrobutyrate en Route to Spiro[piperidine-3,3′-oxindoles]. Advanced Synthesis & Catalysis, 357(18), 3857-3862. doi:10.1002/adsc.201500716

Bao, X., Wang, B., Cui, L., Zhu, G., He, Y., Qu, J., & Song, Y. (2015). An Organocatalytic Asymmetric Friedel–Crafts Addition/Fluorination Sequence: Construction of Oxindole–Pyrazolone Conjugates Bearing Vicinal Tetrasubstituted Stereocenters. Organic Letters, 17(21), 5168-5171. doi:10.1021/acs.orglett.5b02470

Tian, S.-K., Chen, Y., Hang, J., Tang, L., McDaid, P., & Deng, L. (2004). Asymmetric Organic Catalysis with Modified Cinchona Alkaloids. Accounts of Chemical Research, 37(8), 621-631. doi:10.1021/ar030048s

Marcelli, T., & Hiemstra, H. (2010). Cinchona Alkaloids in Asymmetric Organocatalysis. Synthesis, 2010(08), 1229-1279. doi:10.1055/s-0029-1218699

Connon, S. J. (2006). Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry - A European Journal, 12(21), 5418-5427. doi:10.1002/chem.200501076

Chauhan, P., Mahajan, S., Kaya, U., Hack, D., & Enders, D. (2015). Bifunctional Amine-Squaramides: Powerful Hydrogen-Bonding Organocatalysts for Asymmetric Domino/Cascade Reactions. Advanced Synthesis & Catalysis, 357(2-3), 253-281. doi:10.1002/adsc.201401003

Zhang, Z., & Schreiner, P. R. (2009). (Thio)urea organocatalysis—What can be learnt from anion recognition? Chemical Society Reviews, 38(4), 1187. doi:10.1039/b801793j

Alemán, J., Parra, A., Jiang, H., & Jørgensen, K. A. (2011). Squaramides: Bridging from Molecular Recognition to Bifunctional Organocatalysis. Chemistry - A European Journal, 17(25), 6890-6899. doi:10.1002/chem.201003694

Doyle, A. G., & Jacobsen, E. N. (2007). Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chemical Reviews, 107(12), 5713-5743. doi:10.1021/cr068373r

Connon, S. J. (2008). Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chemical Communications, (22), 2499. doi:10.1039/b719249e

Takemoto, Y. (2010). Development of Chiral Thiourea Catalysts and Its Application to Asymmetric Catalytic Reactions. CHEMICAL & PHARMACEUTICAL BULLETIN, 58(5), 593-601. doi:10.1248/cpb.58.593

Auvil, T. J., Schafer, A. G., & Mattson, A. E. (2014). Design Strategies for Enhanced Hydrogen-Bond Donor Catalysts. European Journal of Organic Chemistry, 2014(13), 2633-2646. doi:10.1002/ejoc.201400035

Cinchona

Vakulya, B., Varga, S., Csámpai, A., & Soós, T. (2005). Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Organic Letters, 7(10), 1967-1969. doi:10.1021/ol050431s

Ye, J., Dixon, D. J., & Hynes, P. S. (2005). Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives. Chemical Communications, (35), 4481. doi:10.1039/b508833j

McCooey, S. H., & Connon, S. J. (2005). Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie International Edition, 44(39), 6367-6370. doi:10.1002/anie.200501721

McCooey, S. H., & Connon, S. J. (2005). Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance. Angewandte Chemie, 117(39), 6525-6528. doi:10.1002/ange.200501721

Malerich, J. P., Hagihara, K., & Rawal, V. H. (2008). Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Journal of the American Chemical Society, 130(44), 14416-14417. doi:10.1021/ja805693p

Okino, T., Hoashi, Y., & Takemoto, Y. (2003). Enantioselective Michael Reaction of Malonates to Nitroolefins Catalyzed by Bifunctional Organocatalysts. Journal of the American Chemical Society, 125(42), 12672-12673. doi:10.1021/ja036972z

CCDC 3 ha The Cambridge Crystallographic Data Centre

kumari, P., Barik, S., Khan, N. H., Ganguly, B., Kureshy, R. I., Abdi, S. H. R., & Bajaj, H. C. (2015). The origin for highly enantioselective induction of 1-naphthol to isatin-derived N-Boc ketimines catalyzed by quinine thiourea catalyst: an experimental and computational study. RSC Advances, 5(85), 69493-69501. doi:10.1039/c5ra12795e

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem