Mostrar el registro sencillo del ítem
dc.contributor.author | Fortunati, Elena | es_ES |
dc.contributor.author | Cano Embuena, Amalia Isabel | es_ES |
dc.contributor.author | Cháfer Nácher, María Teresa | es_ES |
dc.contributor.author | González Martínez, María Consuelo | es_ES |
dc.contributor.author | Chiralt, A. | es_ES |
dc.contributor.author | Kenny, J.M. | es_ES |
dc.date.accessioned | 2016-12-16T08:20:36Z | |
dc.date.available | 2016-12-16T08:20:36Z | |
dc.date.issued | 2015-11 | |
dc.identifier.issn | 0022-2461 | |
dc.identifier.uri | http://hdl.handle.net/10251/75269 | |
dc.description.abstract | [EN] Incorporation of cellulose nanocrystals (CNC) to pea starch-poly(vinyl alcohol) (PVA) (1:2 ratio) blend films was carried out in order to improve their physical properties. Different ratios (1, 3 and 5 % wt) of CNC were used and structural, thermal and physical (barrier, mechanical and optical) properties were analysed in comparison to the control film without CNC. Incorporation of CNC enhanced phase separation of polymers in two layers. The upper PVA rich phase contained lumps of starch which emerged from the film surface, thus reducing the film gloss. CNC were dispersed in both polymeric phases as aggregates, whose size increased with the CNC ratio rise. CNC addition did not implied changes in water vapour barrier of the films, but they became slightly stiffer and more stretchable, while crystallization of PVA was partially inhibited. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support from the Spanish Ministerio de Economia y Competitividad throughout the Projects AGL2010-20694 and AGL2013-42989-R. Amalia Cano also thanks the Spanish Ministerio de Educacion, Cultura y Deporte for the FPU grant and COST-STSM-FA1001-14253 for the financial support for the collaboration. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Materials Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Nanocomposites | es_ES |
dc.subject | Optical properties | es_ES |
dc.subject | Phase transitions | es_ES |
dc.subject | Water vapour permeability. | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effect of cellulose nanocrystals on the properties of pea starch-poly(vinyl alcohol) blend films | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10853-015-9249-9 | |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//FA1001-14253/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-20694/ES/FILMS Y RECUBRIMIENTOS COMESTIBLES%2FBIODEGRADABLES, CON ACTIVIDAD ANTIMICROBIANA Y ANTIOXIDANTE, PARA USO ALIMENTARIO. UTILIZACION DE PROCESADO EN HUMEDO Y EN SECO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Fortunati, E.; Cano Embuena, AI.; Cháfer Nácher, MT.; González Martínez, MC.; Chiralt, A.; Kenny, J. (2015). Effect of cellulose nanocrystals on the properties of pea starch-poly(vinyl alcohol) blend films. Journal of Materials Science. 50(21):6979-6992. https://doi.org/10.1007/s10853-015-9249-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1007/s10853-015-9249-9 | es_ES |
dc.description.upvformatpinicio | 6979 | es_ES |
dc.description.upvformatpfin | 6992 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 50 | es_ES |
dc.description.issue | 21 | es_ES |
dc.relation.senia | 292216 | es_ES |
dc.identifier.eissn | 1573-4803 | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM (2010) Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 95:2126–2146 | es_ES |
dc.description.references | Fortunati E, Peltzer M, Armentano I, Jiménez A, Kenny JM (2013) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124 | es_ES |
dc.description.references | Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643 | es_ES |
dc.description.references | Anandjiwala RD (2006) The role of research and development in the global competitiveness of natural fibre products, In: Natural Fibres Vision 2020 New Delhi, pp 1–15 | es_ES |
dc.description.references | Chen Y, Liu Ch, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615 | es_ES |
dc.description.references | Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500 | es_ES |
dc.description.references | Lee SY, Mohan DJ, Kang IE, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82 | es_ES |
dc.description.references | Zhang W, Yang X, Li C, Liang M, Lu C, Deng Y (2011) Mechanical activation of cellulose and its thermoplastic polyvinyl alcohol composites with enhanced physicochemical properties. Carbohydr Polym 83:257–263 | es_ES |
dc.description.references | Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605 | es_ES |
dc.description.references | Fortunati E, Puglia D, Luzi F, Santulli C, Kenny JM, Torre L (2013) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836 | es_ES |
dc.description.references | Cavaille JY, Ruiz MM, Dufrense A, Gerard JF, Graillat C (2000) Processing and characterization of new thermoset nanocomposites based in cellulose whiskers. Compos Interface 7(2):117–131 | es_ES |
dc.description.references | Khoshkava V, Kamal MR (2014) Effect of drying conditions on cellulose nanocrystals (CNC) agglomerate porosity and dispersibility in polymer nanocomposites. Poweder Technol 261:288–298 | es_ES |
dc.description.references | Sturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties f tunicate cellulose whiskers. Biomacromolecules 6:1055–1061 | es_ES |
dc.description.references | Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM (2012) Microstructure and nanoisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036 | es_ES |
dc.description.references | Rescignano N, Fortunati E, Montesano S, Emilianini C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohydr Polym 99:47–58 | es_ES |
dc.description.references | Siqueira G, Brasa J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrical cellulose nanocrystals. Carbohydr Polym 91(2):711–717 | es_ES |
dc.description.references | Choi Y, Simonsen J (2006) Cellulose nanocrystals-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanocompos 6(3):633–639 | es_ES |
dc.description.references | Pereda M, Dufresne A, Aranguren MI, Marcovich E (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1013–1026 | es_ES |
dc.description.references | Ma X, Chang PR, Yu J (2008) Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr Polym 72:369–375 | es_ES |
dc.description.references | Arrieta M, Fortunati E, Dominici F, Rayón E, Lopez J, Kenny JM (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Carbohydr Polym 107:139–149 | es_ES |
dc.description.references | Arrieta M, Fortunati E, Dominici F, Rayón E, Lopez J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystals films: processing, structural and thermal behavior. Carbohydr Polym 107:16–24 | es_ES |
dc.description.references | Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Influence of hydroxypropylmethylcellulose addition and homogenization conditions on properties and ageing of corn starch based films. Carbohydr Polym 89(2):676–686 | es_ES |
dc.description.references | Bonilla J, Atarés L, Vargas M, Chiralt A (2013) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114(3):303–312 | es_ES |
dc.description.references | Cano A, Fortunati E, Cháfer M, Kenny JM, Chiralt A, González C (2015) Properties and ageing behavior of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocoll 48:84–93 | es_ES |
dc.description.references | Siddaramaiah Raj B, Somashekar R (2004) Structure–property relation in polyvinyl alcohol/starch composites. J Appl Polym Sci 9:630–635 | es_ES |
dc.description.references | Priya B, Gupta VK, Pathania D, Singh AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179 | es_ES |
dc.description.references | Luo X, Li J, Lin X (2012) Effect of gelatinization and additives on morphology and thermal behaviour of cornstarch/PVA blend films. Carbohydr Polym 90:1595–1600 | es_ES |
dc.description.references | Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L, Tian W (2008) The effect of citric acid on the structural properties and cytotoxicity of the polyvinylalcohol/starch films when molding at high temperature. Carbohydr Polym 74:763–770 | es_ES |
dc.description.references | Jiang X, Jiang T, Gan L, Zhang X, Dai H, Zhang X (2012) The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films. Carbohydr Polym 90:1677–1684 | es_ES |
dc.description.references | Yoon S, Park M, Byun H (2012) Mechanical and water barrier properties of starch/PVA composite films by adding nano-sized poly(methylmethacrylate-co-acrylamide) particles. Carbohydr Polym 87:676–686 | es_ES |
dc.description.references | Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules 7:2522–2530 | es_ES |
dc.description.references | UNE-EN ISO (2008) Paper, board and pulps—determination of dry matter content—oven-drying method, vol 638 | es_ES |
dc.description.references | Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocoll 26:302–310 | es_ES |
dc.description.references | Roohani M, Habibi Y, Belgacem NM, Ebrahim G, NaghiKarimi A, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498 | es_ES |
dc.description.references | ASTM (1995) Standard test methods for water vapour transmission of materials. Standard designations: E96-95 Annual book of ASTM standards, American Society for Testing and Materials, Philadelphia, pp 406–413 | es_ES |
dc.description.references | Cano A, Jiménez A, Cháfer M, González C, Chiralt A (2014) Effect of amylose: amylopectin ratio and rice bran addition on starch films properties. Carbohydr Polym 111:543–555 | es_ES |
dc.description.references | UNE-ISO 527-1 (2012) Plastics e determination of tensile properties e part 1: general principles | es_ES |
dc.description.references | ASTM (1999) Standard test methods for specular gloss. Designation (D523). In Annual book of ASTM standards, vol 06.01. American Society for Testing and Materials, Philadelphia | es_ES |
dc.description.references | European Standard EN 1186-1:2002 Materials and articles in contact with foodstuffs. Plastics. Guide to the selection of conditions and test methods for overall migration | es_ES |
dc.description.references | Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food | es_ES |
dc.description.references | Sreekumar PA, Al-Harthi MA, De SK (2012) Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polym Eng Sci 52(10):2167–2172 | es_ES |
dc.description.references | Chen J, Liu Ch, Chen Y, Chen Y, Chang PR (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17 | es_ES |
dc.description.references | Jiménez A, Sánchez-González L, Desorby S, Chiralt A, Tehrany EA (2013) Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocoll 35:159–169 | es_ES |
dc.description.references | Jagadish RS, Raj B (2011) Properties and sorption studies of polyethylene oxide-starch blended films. Food Hydrocoll 25:1572–1580 | es_ES |
dc.description.references | Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from Okra Fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230. doi: 10.1002/APP.38524 | es_ES |
dc.description.references | Abdelrazek EM, Elashmawi IS, Labeeb S (2010) Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films. Phys B 405:2021–2027 | es_ES |
dc.description.references | Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3):674–681 | es_ES |
dc.description.references | Favier V, Cavaillé JY, Canova GR, Shrivastavas SC (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37(10):1732–1739 | es_ES |
dc.description.references | Schmidt B, Katiyar V, Plackett D, Larsen EH, Gerds N, Bender Koch C (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam 28:956–966 | es_ES |
dc.description.references | Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956 | es_ES |