- -

Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Somacescu, Simona es_ES
dc.contributor.author Florea, Mihaela es_ES
dc.contributor.author Osiceanu, Petre es_ES
dc.contributor.author Calderon-Moreno, Jose Maria es_ES
dc.contributor.author Ghica, Corneliu es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2017-01-10T10:43:18Z
dc.date.available 2017-01-10T10:43:18Z
dc.date.issued 2015-11-03
dc.identifier.issn 1388-0764
dc.identifier.uri http://hdl.handle.net/10251/76540
dc.description.abstract Ni-doped (CeO2-delta)-YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as template and water as solvent at a strong basic pH value. Following the hydrothermal treatment under autogenous pressure (similar to 18 bars), Ni, Ce, Y, and Zr were well ordered as MA with nanocrystalline framework, assuring thermal stability. A comprehensive investigation of structure, texture, morphology, and surface chemistry was performed by means of a variety of complementary techniques (X-Ray Diffraction, XRD; Raman Spectroscopy, RS; Brunauer-Emmett-Teller, BET; Temperature-Programmed Reduction, TPR; Transmission Electron Microscopy, TEM and DF-STEM; X-ray Photoelectron Spectroscopy, XPS; Catalytic activity and selectivity). N-2 sorption measurements highlighted that the mesoporous structure is formed at 600 degrees C and remains stable at 800 degrees C. At 900 degrees C, the MA collapses, favoring the formation of macropores. The XRD and Raman Spectroscopy of all samples showed the presence of a pure, single phase with fluorite-type structure. At 900 degrees C, an increased tetragonal distortion of the cubic lattice was observed. The surface chemistry probed by XPS exhibits a mixture of oxidation states (Ce3+ + Ce4+) with high percentage of Ce3+ valence state similar to 35 % and (Ni3+ and Ni2+) oxidation states induced by the thermal treatment. These nanoparticles assembled into MA show high stability and selectivity over time in catalytic partial oxidation of methane (CPOM). These promising performances suggest an interesting prospect for introduction as anode within IT-SOFC assemblies. es_ES
dc.description.sponsorship The authors S. Somacescu, M. Florea, P. Osiceanu, and J.M. Calderon-Moreno are highly grateful for the support given by the Partnership Programme, contract No. 26/2012. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Journal of Nanoparticle Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanoparticles es_ES
dc.subject Mesoporous es_ES
dc.subject Ce3+ oxidation state es_ES
dc.subject Methane conversion es_ES
dc.subject Energy conversion es_ES
dc.title Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11051-015-3206-z
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-II-PT-PCCA-2011-3.1-1423/RO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Somacescu, S.; Florea, M.; Osiceanu, P.; Calderon-Moreno, JM.; Ghica, C.; Serra Alfaro, JM. (2015). Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM). Journal of Nanoparticle Research. 17(11):4-16. doi:10.1007/s11051-015-3206-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s11051-015-3206-z es_ES
dc.description.upvformatpinicio 4 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 11 es_ES
dc.relation.senia 310656 es_ES
dc.description.references Almar L, Andreu T, Morata A, Torrell M, Yedra L, Estradé S, Peiró F, Tarancon A (2014) High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. J Mater Chem A 2(9):3134–3141. doi: 10.1039/C3TA13951D es_ES
dc.description.references An CM, Song J-H, Kang I, Sammes N (2010) The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. J Power Sources 195(3):821–824. doi: 10.1016/j.jpowsour.2009.08.043 es_ES
dc.description.references Borchert H, Frolova YV, Kaichev VV, Prosvirin IP, Alikina GM, Lukashevich AI, Zaikovskii VI, Moroz EM, Trukhan SN, Ivanov VP (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109(12):5728–5738 es_ES
dc.description.references Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J Chem Soc, Dalton Trans 17:1686–1698. doi: 10.1039/DT9760001686 es_ES
dc.description.references Calderon-Moreno JM, Yoshimura M (2002) Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ionics 154–155:125–133. doi: 10.1016/S0167-2738(02)00473-3 es_ES
dc.description.references Chen M, Kim BH, Xu Q, Nam OJ, Ko JH (2008) Synthesis and performances of Ni–SDC cermets for IT-SOFC anode. J Eur Ceram Soc 28(15):2947–2953. doi: 10.1016/j.jeurceramsoc.2008.05.009 es_ES
dc.description.references Dajiang M, Yaoqiang C, Junbo Z, Zhenling W, Di M, Maochu G (2007) Catalytic partial oxidation of methane over Ni/CeO 2-ZrO 2-Al2O3. J Rare Earth 25(3):311–315. doi: 10.1016/S1002-0721(07)60428-1 es_ES
dc.description.references Dilawar N, Mehrotra S, Varandani D, Kumaraswamy B, Haldar S, Bandyopadhyay A (2008) A Raman spectroscopic study of C-type rare earth sesquioxides. Mater Charact 59(4):462–467. doi: 10.1016/j.matchar.2007.04.008 es_ES
dc.description.references Droushiotis N, Doraswami U, Kanawka K, Kelsall G, Li K (2009) Characterization of NiO–yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes. Solid State Ionics 180(17):1091–1099. doi: 10.1016/j.ssi.2009.04.004 es_ES
dc.description.references El Gabaly F, McCarty KF, Bluhm H, McDaniel AH (2013) Oxidation stages of Ni electrodes in solid oxide fuel cell environments. Phys Chem Chem Phys 15(21):8334–8341. doi: 10.1039/C3CP50366F es_ES
dc.description.references Fairley N (2009) CasaXPS Manual 2.3. 15: spectroscopy. Casa Software Limited, Teignmouth es_ES
dc.description.references Garvie R (1978) Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 82(2):218–224. doi: 10.1021/j100491a016 es_ES
dc.description.references Horiuchi H, Schultz AJ, Leung PC, Williams JM (1984) Time-of-flight neutron diffraction study of a single crystal of yttria-stabilized zirconia, Zr (Y) O1. 862, at high temperature and in an applied electrical field. Acta Crystallogr Sect B 40(4):367–372. doi: 10.1107/S0108768184002329 es_ES
dc.description.references Hu C-W, Yao J, Yang H-Q, Chen Y, Tian A-M (1997) On the inhomogeneity of low nickel loading methanation catalyst. J Catal 166(1):1–7. doi: 10.1006/jcat.1997.1469 es_ES
dc.description.references Kim K, Winograd N (1974) X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci 43(2):625–643. doi: 10.1016/0039-6028(74)90281-7 es_ES
dc.description.references Laha S, Ryoo R (2003) Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem Commun 17:2138–2139. doi: 10.1039/B305524H es_ES
dc.description.references Ma D, Mei D, Li X, Gong M, Chen Y (2006) Partial oxidation of methane to syngas over monolithic Ni/γ–Al2O3 catalyst—effects of rare earths and other basic promoters. J Rare Earth 24(4):451–455. doi: 10.1016/S1002-0721(06)60142-7 es_ES
dc.description.references Miao Q, Xiong G, Sheng S, Cui W, Xu L, Guo X (1997) Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. Appl Catal A-Gen 154(1):17–27. doi: 10.1016/S0926-860X(96)00377-8 es_ES
dc.description.references Michel D, Perez y Jorba M, Collongues R (1974) Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1 − x) ZrO2−x Ln2 O3. Mater Res Bull 9(11):1457–1468. doi: 10.1016/0025-5408(74)90092-0 es_ES
dc.description.references Moon H, Kim SD, Hyun SH, Kim HS (2008) Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int J Hydrog Energy 33(6):1758–1768. doi: 10.1016/j.ijhydene.2007.12.062 es_ES
dc.description.references Mori H, Wen C-j, Otomo J, Eguchi K, Takahashi H (2003) Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Appl Catal A-Gen 245(1):79–85. doi: 10.1016/S0926-860X(02)00634-8 es_ES
dc.description.references Müller G, Vannier R-N, Ringuedé A, Laberty-Robert C, Sanchez C (2013) Nanocrystalline, mesoporous NiO/Ce 0.9 Gd 0.1 O2−δ thin films with tuned microstructures and electrical properties: in situ characterization of electrical responses during the reduction of NiO. J Mater Chem A 1(36):10753–10761. doi: 10.1039/C3TA11175J es_ES
dc.description.references Otsuka K, Wang Y, Sunada E, Yamanaka I (1998) Direct partial oxidation of methane to synthesis gas by cerium oxide. J Catal 175(2):152–160. doi: 10.1006/jcat.1998.1985 es_ES
dc.description.references Otsuka K, Wang Y, Nakamura M (1999) Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2−ZrO2 solid solution at moderate temperature. Appl Catal A-Gen 183(2):317–324. doi: 10.1016/S0926-860X(99)00070-8 es_ES
dc.description.references Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J-C (2003) Raman and X-ray photoelectron spectroscopy study of CeO2–ZrO2 and V2O5/CeO2–ZrO2 catalysts. Langmuir 19(7):3025–3030. doi: 10.1021/la0208528 es_ES
dc.description.references Rouquerol J, Rouquerol F, Sing KS (1998) Absorption by powders and porous solids. Academic press, San Diego es_ES
dc.description.references Somacescu S, Parvulescu V, Osiceanu P, Calderon-Moreno JM, Su B-L (2011a) Structure and surface chemistry in crystalline mesoporous (CeO2−δ )–YSZ. J Colloid Interf Sci 363(1):165–174. doi: 10.1016/j.jcis.2011.06.051 es_ES
dc.description.references Somacescu S, Parvulescu V, Osiceanu P, Calderon-Moreno JM, Su B-L (2011b) Structure and surface chemistry in crystalline mesoporous (CeO)2-delta–YSZ. J Colloid Interf Sci 363(1):165–174 es_ES
dc.description.references Somacescu S, Parvulescu V, Calderon-Moreno J, Suh S-H, Osiceanu P, Su B-L (2012) Uniform nanoparticles building Ce1–x Pr × O2−δ mesoarchitectures: structure, morphology, surface chemistry, and catalytic performance. J Nanopart Res 14(6):1–17. doi: 10.1007/s11051-012-0885-6 es_ES
dc.description.references Somacescu S, Osiceanu P, Calderon Moreno JM, Navarrete L, Serra JM (2013a) Mesoporous nanocomposite sensors based on Sn1−x Ce x O2−δ metastable solid solution with high percentage of Ce3+ valence state for selective detection of H2 and CO. Micropor Mesopor Mat 179:78–88. doi: 10.1016/j.micromeso.2013.05.011 es_ES
dc.description.references Somacescu S, Osiceanu P, Calderon Moreno JM, Navarrete L, Serra JM (2013b) Mesoporous nanocomposite sensors based on Sn1−x Ce x O2−δ metastable solid solution with high percentage of Ce3+ valence state for selective detection of H2 and CO. Micropor Mesopor Mat 179:78–88. doi: 10.1016/j.micromeso.2013.05.011 es_ES
dc.description.references Wang W, Su C, Zheng T, Liao M, Shao Z (2012) Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. Int J Hydrog Energ 37(10):8603–8612 es_ES
dc.description.references Zherebetskyy D, Scheele M, Zhang Y, Bronstein N, Thompson C, Britt D, Salmeron M, Alivisatos P, Wang L-W (2014) Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344(6190):1380–1384. doi: 10.1126/science.1252727 es_ES
dc.description.references Zhou X, Yan N, Chuang KT, Luo J (2014) Progress in La-doped SrTiO 3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv 4(1):118–131. doi: 10.1039/C3RA42666A es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem