Mostrar el registro sencillo del ítem
dc.contributor.author | Somacescu, Simona | es_ES |
dc.contributor.author | Florea, Mihaela | es_ES |
dc.contributor.author | Osiceanu, Petre | es_ES |
dc.contributor.author | Calderon-Moreno, Jose Maria | es_ES |
dc.contributor.author | Ghica, Corneliu | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.date.accessioned | 2017-01-10T10:43:18Z | |
dc.date.available | 2017-01-10T10:43:18Z | |
dc.date.issued | 2015-11-03 | |
dc.identifier.issn | 1388-0764 | |
dc.identifier.uri | http://hdl.handle.net/10251/76540 | |
dc.description.abstract | Ni-doped (CeO2-delta)-YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as template and water as solvent at a strong basic pH value. Following the hydrothermal treatment under autogenous pressure (similar to 18 bars), Ni, Ce, Y, and Zr were well ordered as MA with nanocrystalline framework, assuring thermal stability. A comprehensive investigation of structure, texture, morphology, and surface chemistry was performed by means of a variety of complementary techniques (X-Ray Diffraction, XRD; Raman Spectroscopy, RS; Brunauer-Emmett-Teller, BET; Temperature-Programmed Reduction, TPR; Transmission Electron Microscopy, TEM and DF-STEM; X-ray Photoelectron Spectroscopy, XPS; Catalytic activity and selectivity). N-2 sorption measurements highlighted that the mesoporous structure is formed at 600 degrees C and remains stable at 800 degrees C. At 900 degrees C, the MA collapses, favoring the formation of macropores. The XRD and Raman Spectroscopy of all samples showed the presence of a pure, single phase with fluorite-type structure. At 900 degrees C, an increased tetragonal distortion of the cubic lattice was observed. The surface chemistry probed by XPS exhibits a mixture of oxidation states (Ce3+ + Ce4+) with high percentage of Ce3+ valence state similar to 35 % and (Ni3+ and Ni2+) oxidation states induced by the thermal treatment. These nanoparticles assembled into MA show high stability and selectivity over time in catalytic partial oxidation of methane (CPOM). These promising performances suggest an interesting prospect for introduction as anode within IT-SOFC assemblies. | es_ES |
dc.description.sponsorship | The authors S. Somacescu, M. Florea, P. Osiceanu, and J.M. Calderon-Moreno are highly grateful for the support given by the Partnership Programme, contract No. 26/2012. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Journal of Nanoparticle Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Mesoporous | es_ES |
dc.subject | Ce3+ oxidation state | es_ES |
dc.subject | Methane conversion | es_ES |
dc.subject | Energy conversion | es_ES |
dc.title | Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11051-015-3206-z | |
dc.relation.projectID | info:eu-repo/grantAgreement/UEFISCDI//PN-II-PT-PCCA-2011-3.1-1423/RO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Somacescu, S.; Florea, M.; Osiceanu, P.; Calderon-Moreno, JM.; Ghica, C.; Serra Alfaro, JM. (2015). Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM). Journal of Nanoparticle Research. 17(11):4-16. doi:10.1007/s11051-015-3206-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s11051-015-3206-z | es_ES |
dc.description.upvformatpinicio | 4 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 11 | es_ES |
dc.relation.senia | 310656 | es_ES |
dc.description.references | Almar L, Andreu T, Morata A, Torrell M, Yedra L, Estradé S, Peiró F, Tarancon A (2014) High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. J Mater Chem A 2(9):3134–3141. doi: 10.1039/C3TA13951D | es_ES |
dc.description.references | An CM, Song J-H, Kang I, Sammes N (2010) The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. J Power Sources 195(3):821–824. doi: 10.1016/j.jpowsour.2009.08.043 | es_ES |
dc.description.references | Borchert H, Frolova YV, Kaichev VV, Prosvirin IP, Alikina GM, Lukashevich AI, Zaikovskii VI, Moroz EM, Trukhan SN, Ivanov VP (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109(12):5728–5738 | es_ES |
dc.description.references | Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J Chem Soc, Dalton Trans 17:1686–1698. doi: 10.1039/DT9760001686 | es_ES |
dc.description.references | Calderon-Moreno JM, Yoshimura M (2002) Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ionics 154–155:125–133. doi: 10.1016/S0167-2738(02)00473-3 | es_ES |
dc.description.references | Chen M, Kim BH, Xu Q, Nam OJ, Ko JH (2008) Synthesis and performances of Ni–SDC cermets for IT-SOFC anode. J Eur Ceram Soc 28(15):2947–2953. doi: 10.1016/j.jeurceramsoc.2008.05.009 | es_ES |
dc.description.references | Dajiang M, Yaoqiang C, Junbo Z, Zhenling W, Di M, Maochu G (2007) Catalytic partial oxidation of methane over Ni/CeO 2-ZrO 2-Al2O3. J Rare Earth 25(3):311–315. doi: 10.1016/S1002-0721(07)60428-1 | es_ES |
dc.description.references | Dilawar N, Mehrotra S, Varandani D, Kumaraswamy B, Haldar S, Bandyopadhyay A (2008) A Raman spectroscopic study of C-type rare earth sesquioxides. Mater Charact 59(4):462–467. doi: 10.1016/j.matchar.2007.04.008 | es_ES |
dc.description.references | Droushiotis N, Doraswami U, Kanawka K, Kelsall G, Li K (2009) Characterization of NiO–yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes. Solid State Ionics 180(17):1091–1099. doi: 10.1016/j.ssi.2009.04.004 | es_ES |
dc.description.references | El Gabaly F, McCarty KF, Bluhm H, McDaniel AH (2013) Oxidation stages of Ni electrodes in solid oxide fuel cell environments. Phys Chem Chem Phys 15(21):8334–8341. doi: 10.1039/C3CP50366F | es_ES |
dc.description.references | Fairley N (2009) CasaXPS Manual 2.3. 15: spectroscopy. Casa Software Limited, Teignmouth | es_ES |
dc.description.references | Garvie R (1978) Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 82(2):218–224. doi: 10.1021/j100491a016 | es_ES |
dc.description.references | Horiuchi H, Schultz AJ, Leung PC, Williams JM (1984) Time-of-flight neutron diffraction study of a single crystal of yttria-stabilized zirconia, Zr (Y) O1. 862, at high temperature and in an applied electrical field. Acta Crystallogr Sect B 40(4):367–372. doi: 10.1107/S0108768184002329 | es_ES |
dc.description.references | Hu C-W, Yao J, Yang H-Q, Chen Y, Tian A-M (1997) On the inhomogeneity of low nickel loading methanation catalyst. J Catal 166(1):1–7. doi: 10.1006/jcat.1997.1469 | es_ES |
dc.description.references | Kim K, Winograd N (1974) X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci 43(2):625–643. doi: 10.1016/0039-6028(74)90281-7 | es_ES |
dc.description.references | Laha S, Ryoo R (2003) Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem Commun 17:2138–2139. doi: 10.1039/B305524H | es_ES |
dc.description.references | Ma D, Mei D, Li X, Gong M, Chen Y (2006) Partial oxidation of methane to syngas over monolithic Ni/γ–Al2O3 catalyst—effects of rare earths and other basic promoters. J Rare Earth 24(4):451–455. doi: 10.1016/S1002-0721(06)60142-7 | es_ES |
dc.description.references | Miao Q, Xiong G, Sheng S, Cui W, Xu L, Guo X (1997) Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. Appl Catal A-Gen 154(1):17–27. doi: 10.1016/S0926-860X(96)00377-8 | es_ES |
dc.description.references | Michel D, Perez y Jorba M, Collongues R (1974) Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1 − x) ZrO2−x Ln2 O3. Mater Res Bull 9(11):1457–1468. doi: 10.1016/0025-5408(74)90092-0 | es_ES |
dc.description.references | Moon H, Kim SD, Hyun SH, Kim HS (2008) Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int J Hydrog Energy 33(6):1758–1768. doi: 10.1016/j.ijhydene.2007.12.062 | es_ES |
dc.description.references | Mori H, Wen C-j, Otomo J, Eguchi K, Takahashi H (2003) Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Appl Catal A-Gen 245(1):79–85. doi: 10.1016/S0926-860X(02)00634-8 | es_ES |
dc.description.references | Müller G, Vannier R-N, Ringuedé A, Laberty-Robert C, Sanchez C (2013) Nanocrystalline, mesoporous NiO/Ce 0.9 Gd 0.1 O2−δ thin films with tuned microstructures and electrical properties: in situ characterization of electrical responses during the reduction of NiO. J Mater Chem A 1(36):10753–10761. doi: 10.1039/C3TA11175J | es_ES |
dc.description.references | Otsuka K, Wang Y, Sunada E, Yamanaka I (1998) Direct partial oxidation of methane to synthesis gas by cerium oxide. J Catal 175(2):152–160. doi: 10.1006/jcat.1998.1985 | es_ES |
dc.description.references | Otsuka K, Wang Y, Nakamura M (1999) Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2−ZrO2 solid solution at moderate temperature. Appl Catal A-Gen 183(2):317–324. doi: 10.1016/S0926-860X(99)00070-8 | es_ES |
dc.description.references | Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J-C (2003) Raman and X-ray photoelectron spectroscopy study of CeO2–ZrO2 and V2O5/CeO2–ZrO2 catalysts. Langmuir 19(7):3025–3030. doi: 10.1021/la0208528 | es_ES |
dc.description.references | Rouquerol J, Rouquerol F, Sing KS (1998) Absorption by powders and porous solids. Academic press, San Diego | es_ES |
dc.description.references | Somacescu S, Parvulescu V, Osiceanu P, Calderon-Moreno JM, Su B-L (2011a) Structure and surface chemistry in crystalline mesoporous (CeO2−δ )–YSZ. J Colloid Interf Sci 363(1):165–174. doi: 10.1016/j.jcis.2011.06.051 | es_ES |
dc.description.references | Somacescu S, Parvulescu V, Osiceanu P, Calderon-Moreno JM, Su B-L (2011b) Structure and surface chemistry in crystalline mesoporous (CeO)2-delta–YSZ. J Colloid Interf Sci 363(1):165–174 | es_ES |
dc.description.references | Somacescu S, Parvulescu V, Calderon-Moreno J, Suh S-H, Osiceanu P, Su B-L (2012) Uniform nanoparticles building Ce1–x Pr × O2−δ mesoarchitectures: structure, morphology, surface chemistry, and catalytic performance. J Nanopart Res 14(6):1–17. doi: 10.1007/s11051-012-0885-6 | es_ES |
dc.description.references | Somacescu S, Osiceanu P, Calderon Moreno JM, Navarrete L, Serra JM (2013a) Mesoporous nanocomposite sensors based on Sn1−x Ce x O2−δ metastable solid solution with high percentage of Ce3+ valence state for selective detection of H2 and CO. Micropor Mesopor Mat 179:78–88. doi: 10.1016/j.micromeso.2013.05.011 | es_ES |
dc.description.references | Somacescu S, Osiceanu P, Calderon Moreno JM, Navarrete L, Serra JM (2013b) Mesoporous nanocomposite sensors based on Sn1−x Ce x O2−δ metastable solid solution with high percentage of Ce3+ valence state for selective detection of H2 and CO. Micropor Mesopor Mat 179:78–88. doi: 10.1016/j.micromeso.2013.05.011 | es_ES |
dc.description.references | Wang W, Su C, Zheng T, Liao M, Shao Z (2012) Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. Int J Hydrog Energ 37(10):8603–8612 | es_ES |
dc.description.references | Zherebetskyy D, Scheele M, Zhang Y, Bronstein N, Thompson C, Britt D, Salmeron M, Alivisatos P, Wang L-W (2014) Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344(6190):1380–1384. doi: 10.1126/science.1252727 | es_ES |
dc.description.references | Zhou X, Yan N, Chuang KT, Luo J (2014) Progress in La-doped SrTiO 3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv 4(1):118–131. doi: 10.1039/C3RA42666A | es_ES |