- -

Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

Mostrar el registro completo del ítem

Somacescu, S.; Florea, M.; Osiceanu, P.; Calderon-Moreno, JM.; Ghica, C.; Serra Alfaro, JM. (2015). Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM). Journal of Nanoparticle Research. 17(11):4-16. doi:10.1007/s11051-015-3206-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/76540

Ficheros en el ítem

Metadatos del ítem

Título: Ni-doped (CeO2-delta)-YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)
Autor: Somacescu, Simona Florea, Mihaela Osiceanu, Petre Calderon-Moreno, Jose Maria Ghica, Corneliu Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
Ni-doped (CeO2-delta)-YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as ...[+]
Palabras clave: Nanoparticles , Mesoporous , Ce3+ oxidation state , Methane conversion , Energy conversion
Derechos de uso: Cerrado
Fuente:
Journal of Nanoparticle Research. (issn: 1388-0764 )
DOI: 10.1007/s11051-015-3206-z
Editorial:
Springer Verlag (Germany)
Versión del editor: http://dx.doi.org/10.1007/s11051-015-3206-z
Código del Proyecto:
info:eu-repo/grantAgreement/UEFISCDI//PN-II-PT-PCCA-2011-3.1-1423/RO/
Agradecimientos:
The authors S. Somacescu, M. Florea, P. Osiceanu, and J.M. Calderon-Moreno are highly grateful for the support given by the Partnership Programme, contract No. 26/2012.
Tipo: Artículo

References

Almar L, Andreu T, Morata A, Torrell M, Yedra L, Estradé S, Peiró F, Tarancon A (2014) High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. J Mater Chem A 2(9):3134–3141. doi: 10.1039/C3TA13951D

An CM, Song J-H, Kang I, Sammes N (2010) The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. J Power Sources 195(3):821–824. doi: 10.1016/j.jpowsour.2009.08.043

Borchert H, Frolova YV, Kaichev VV, Prosvirin IP, Alikina GM, Lukashevich AI, Zaikovskii VI, Moroz EM, Trukhan SN, Ivanov VP (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109(12):5728–5738 [+]
Almar L, Andreu T, Morata A, Torrell M, Yedra L, Estradé S, Peiró F, Tarancon A (2014) High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. J Mater Chem A 2(9):3134–3141. doi: 10.1039/C3TA13951D

An CM, Song J-H, Kang I, Sammes N (2010) The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. J Power Sources 195(3):821–824. doi: 10.1016/j.jpowsour.2009.08.043

Borchert H, Frolova YV, Kaichev VV, Prosvirin IP, Alikina GM, Lukashevich AI, Zaikovskii VI, Moroz EM, Trukhan SN, Ivanov VP (2005) Electronic and chemical properties of nanostructured cerium dioxide doped with praseodymium. J Phys Chem B 109(12):5728–5738

Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. J Chem Soc, Dalton Trans 17:1686–1698. doi: 10.1039/DT9760001686

Calderon-Moreno JM, Yoshimura M (2002) Characterization by Raman spectroscopy of solid solutions in the yttria-rich side of the zirconia–yttria system. Solid State Ionics 154–155:125–133. doi: 10.1016/S0167-2738(02)00473-3

Chen M, Kim BH, Xu Q, Nam OJ, Ko JH (2008) Synthesis and performances of Ni–SDC cermets for IT-SOFC anode. J Eur Ceram Soc 28(15):2947–2953. doi: 10.1016/j.jeurceramsoc.2008.05.009

Dajiang M, Yaoqiang C, Junbo Z, Zhenling W, Di M, Maochu G (2007) Catalytic partial oxidation of methane over Ni/CeO 2-ZrO 2-Al2O3. J Rare Earth 25(3):311–315. doi: 10.1016/S1002-0721(07)60428-1

Dilawar N, Mehrotra S, Varandani D, Kumaraswamy B, Haldar S, Bandyopadhyay A (2008) A Raman spectroscopic study of C-type rare earth sesquioxides. Mater Charact 59(4):462–467. doi: 10.1016/j.matchar.2007.04.008

Droushiotis N, Doraswami U, Kanawka K, Kelsall G, Li K (2009) Characterization of NiO–yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes. Solid State Ionics 180(17):1091–1099. doi: 10.1016/j.ssi.2009.04.004

El Gabaly F, McCarty KF, Bluhm H, McDaniel AH (2013) Oxidation stages of Ni electrodes in solid oxide fuel cell environments. Phys Chem Chem Phys 15(21):8334–8341. doi: 10.1039/C3CP50366F

Fairley N (2009) CasaXPS Manual 2.3. 15: spectroscopy. Casa Software Limited, Teignmouth

Garvie R (1978) Stabilization of the tetragonal structure in zirconia microcrystals. J Phys Chem 82(2):218–224. doi: 10.1021/j100491a016

Horiuchi H, Schultz AJ, Leung PC, Williams JM (1984) Time-of-flight neutron diffraction study of a single crystal of yttria-stabilized zirconia, Zr (Y) O1. 862, at high temperature and in an applied electrical field. Acta Crystallogr Sect B 40(4):367–372. doi: 10.1107/S0108768184002329

Hu C-W, Yao J, Yang H-Q, Chen Y, Tian A-M (1997) On the inhomogeneity of low nickel loading methanation catalyst. J Catal 166(1):1–7. doi: 10.1006/jcat.1997.1469

Kim K, Winograd N (1974) X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci 43(2):625–643. doi: 10.1016/0039-6028(74)90281-7

Laha S, Ryoo R (2003) Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem Commun 17:2138–2139. doi: 10.1039/B305524H

Ma D, Mei D, Li X, Gong M, Chen Y (2006) Partial oxidation of methane to syngas over monolithic Ni/γ–Al2O3 catalyst—effects of rare earths and other basic promoters. J Rare Earth 24(4):451–455. doi: 10.1016/S1002-0721(06)60142-7

Miao Q, Xiong G, Sheng S, Cui W, Xu L, Guo X (1997) Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. Appl Catal A-Gen 154(1):17–27. doi: 10.1016/S0926-860X(96)00377-8

Michel D, Perez y Jorba M, Collongues R (1974) Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1 − x) ZrO2−x Ln2 O3. Mater Res Bull 9(11):1457–1468. doi: 10.1016/0025-5408(74)90092-0

Moon H, Kim SD, Hyun SH, Kim HS (2008) Development of IT-SOFC unit cells with anode-supported thin electrolytes via tape casting and co-firing. Int J Hydrog Energy 33(6):1758–1768. doi: 10.1016/j.ijhydene.2007.12.062

Mori H, Wen C-j, Otomo J, Eguchi K, Takahashi H (2003) Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique. Appl Catal A-Gen 245(1):79–85. doi: 10.1016/S0926-860X(02)00634-8

Müller G, Vannier R-N, Ringuedé A, Laberty-Robert C, Sanchez C (2013) Nanocrystalline, mesoporous NiO/Ce 0.9 Gd 0.1 O2−δ thin films with tuned microstructures and electrical properties: in situ characterization of electrical responses during the reduction of NiO. J Mater Chem A 1(36):10753–10761. doi: 10.1039/C3TA11175J

Otsuka K, Wang Y, Sunada E, Yamanaka I (1998) Direct partial oxidation of methane to synthesis gas by cerium oxide. J Catal 175(2):152–160. doi: 10.1006/jcat.1998.1985

Otsuka K, Wang Y, Nakamura M (1999) Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2−ZrO2 solid solution at moderate temperature. Appl Catal A-Gen 183(2):317–324. doi: 10.1016/S0926-860X(99)00070-8

Reddy BM, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J-C (2003) Raman and X-ray photoelectron spectroscopy study of CeO2–ZrO2 and V2O5/CeO2–ZrO2 catalysts. Langmuir 19(7):3025–3030. doi: 10.1021/la0208528

Rouquerol J, Rouquerol F, Sing KS (1998) Absorption by powders and porous solids. Academic press, San Diego

Somacescu S, Parvulescu V, Osiceanu P, Calderon-Moreno JM, Su B-L (2011a) Structure and surface chemistry in crystalline mesoporous (CeO2−δ )–YSZ. J Colloid Interf Sci 363(1):165–174. doi: 10.1016/j.jcis.2011.06.051

Somacescu S, Parvulescu V, Osiceanu P, Calderon-Moreno JM, Su B-L (2011b) Structure and surface chemistry in crystalline mesoporous (CeO)2-delta–YSZ. J Colloid Interf Sci 363(1):165–174

Somacescu S, Parvulescu V, Calderon-Moreno J, Suh S-H, Osiceanu P, Su B-L (2012) Uniform nanoparticles building Ce1–x Pr × O2−δ mesoarchitectures: structure, morphology, surface chemistry, and catalytic performance. J Nanopart Res 14(6):1–17. doi: 10.1007/s11051-012-0885-6

Somacescu S, Osiceanu P, Calderon Moreno JM, Navarrete L, Serra JM (2013a) Mesoporous nanocomposite sensors based on Sn1−x Ce x O2−δ metastable solid solution with high percentage of Ce3+ valence state for selective detection of H2 and CO. Micropor Mesopor Mat 179:78–88. doi: 10.1016/j.micromeso.2013.05.011

Somacescu S, Osiceanu P, Calderon Moreno JM, Navarrete L, Serra JM (2013b) Mesoporous nanocomposite sensors based on Sn1−x Ce x O2−δ metastable solid solution with high percentage of Ce3+ valence state for selective detection of H2 and CO. Micropor Mesopor Mat 179:78–88. doi: 10.1016/j.micromeso.2013.05.011

Wang W, Su C, Zheng T, Liao M, Shao Z (2012) Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. Int J Hydrog Energ 37(10):8603–8612

Zherebetskyy D, Scheele M, Zhang Y, Bronstein N, Thompson C, Britt D, Salmeron M, Alivisatos P, Wang L-W (2014) Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344(6190):1380–1384. doi: 10.1126/science.1252727

Zhou X, Yan N, Chuang KT, Luo J (2014) Progress in La-doped SrTiO 3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv 4(1):118–131. doi: 10.1039/C3RA42666A

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem