Resumen:
|
Anaerobic membrane bioreactors (AnMBRs) enable energy recovery from wastewater while simultaneously achieving high levels of treatment. The objective of this study was to elucidate how detailed
design and operational ...[+]
Anaerobic membrane bioreactors (AnMBRs) enable energy recovery from wastewater while simultaneously achieving high levels of treatment. The objective of this study was to elucidate how detailed
design and operational decisions of submerged AnMBRs influence the technological, environmental, and
economic sustainability of the system across its life cycle. Specific design and operational decisions
evaluated included: solids retention time (SRT), mixed liquor suspended solids (MLSS) concentration,
sludge recycling ratio (r), flux (J), and specific gas demand per membrane area (SGD). The possibility of
methane recovery (both as biogas and as soluble methane in reactor effluent) and bioenergy production,
nutrient recovery, and final destination of the sludge (land application, landfill, or incineration) were also
evaluated. The implications of these design and operational decisions were characterized by leveraging a
quantitative sustainable design (QSD) framework which integrated steady-state performance modeling
across seasonal temperatures (using pilot-scale experimental data and the simulating software DESASS),
life cycle cost (LCC) analysis, and life cycle assessment (LCA). Sensitivity and uncertainty analyses were
used to characterize the relative importance of individual design decisions, and to navigate trade-offs
across environmental, economic, and technological criteria. Based on this analysis, there are design
and operational conditions under which submerged AnMBRs could be net energy positive and contribute
to the pursuit of carbon negative wastewater treatment.
[-]
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-02/ES/ESTUDIO EXPERIMENTAL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/
info:eu-repo/grantAgreement/MICINN//CTM2011-28595-C02-01/ES/MODELACION Y CONTROL DE LA RECUPERACION COMO BIOGAS DE LA ENERGIA DE LA MATERIA ORGANICA Y NUTRIENTES DEL AGUA RESIDUAL, ACOPLANDO UN ANBRM Y UN CULTIVO DE MICROALGAS/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F203/
info:eu-repo/grantAgreement/KAUST//UIeRA 2012-06291/
|
Agradecimientos:
|
This research work was possible thanks to project CTM2011-28595-C02-01/02 (funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund and Generalitat Valenciana ...[+]
This research work was possible thanks to project CTM2011-28595-C02-01/02 (funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund and Generalitat Valenciana GVA-ACOMP2013/203), and by the King Abdullah University of Science and Technology (KAUST) Academic Partnership Program (UIeRA 2012-06291), which are gratefully acknowledged. The authors would like also to acknowledge the Jack Kent Cooke Foundation for partial funding for B.D. Shoener.
[-]
|